Difference between revisions of "Multigrade operator"

MyWikiBiz, Author Your Legacy — Friday November 29, 2024
Jump to navigationJump to search
(→‎Syllabus: update)
Line 5: Line 5:
 
The application of a multigrade operator <math>\Omega</math> to a finite sequence of operands (''x''<sub>1</sub>,&nbsp;…,&nbsp;''x''<sub>''k''</sub>) is typically denoted with the parameter ''k'' left tacit, as the appropriate application is implicit in the number of operands listed.  Thus <math>\Omega</math>(''x''<sub>1</sub>,&nbsp;…,&nbsp;''x''<sub>''k''</sub>) may be taken for <math>\Omega</math><sub>''k''</sub>(''x''<sub>1</sub>,&nbsp;…,&nbsp;''x''<sub>''k''</sub>).
 
The application of a multigrade operator <math>\Omega</math> to a finite sequence of operands (''x''<sub>1</sub>,&nbsp;…,&nbsp;''x''<sub>''k''</sub>) is typically denoted with the parameter ''k'' left tacit, as the appropriate application is implicit in the number of operands listed.  Thus <math>\Omega</math>(''x''<sub>1</sub>,&nbsp;…,&nbsp;''x''<sub>''k''</sub>) may be taken for <math>\Omega</math><sub>''k''</sub>(''x''<sub>1</sub>,&nbsp;…,&nbsp;''x''<sub>''k''</sub>).
  
==Related topic==
+
==Syllabus==
  
 +
===Focal nodes===
 +
 +
{{col-begin}}
 +
{{col-break}}
 +
* [[Inquiry Live]]
 +
{{col-break}}
 +
* [[Logic Live]]
 +
{{col-end}}
 +
 +
===Peer nodes===
 +
 +
{{col-begin}}
 +
{{col-break}}
 +
* [http://mywikibiz.com/Multigrade_operator Multigrade Operator @ MyWikiBiz]
 +
* [http://mathweb.org/wiki/Multigrade_operator Multigrade Operator @ MathWeb Wiki]
 +
* [http://netknowledge.org/wiki/Multigrade_operator Multigrade Operator @ NetKnowledge]
 +
{{col-break}}
 +
* [http://wiki.oercommons.org/mediawiki/index.php/Multigrade_operator Multigrade Operator @ OER Commons]
 +
* [http://p2pfoundation.net/Multigrade_Operator Multigrade Operator @ P2P Foundation]
 +
* [http://semanticweb.org/wiki/Multigrade_operator Multigrade Operator @ SemanticWeb]
 +
{{col-end}}
 +
 +
===Logical operators===
 +
 +
{{col-begin}}
 +
{{col-break}}
 +
* [[Exclusive disjunction]]
 +
* [[Logical conjunction]]
 +
* [[Logical disjunction]]
 +
* [[Logical equality]]
 +
{{col-break}}
 +
* [[Logical implication]]
 +
* [[Logical NAND]]
 +
* [[Logical NNOR]]
 +
* [[Logical negation|Negation]]
 +
{{col-end}}
 +
 +
===Related topics===
 +
 +
{{col-begin}}
 +
{{col-break}}
 +
* [[Ampheck]]
 +
* [[Boolean domain]]
 +
* [[Boolean function]]
 +
* [[Boolean-valued function]]
 +
* [[Differential logic]]
 +
{{col-break}}
 +
* [[Logical graph]]
 +
* [[Minimal negation operator]]
 +
* [[Multigrade operator]]
 
* [[Parametric operator]]
 
* [[Parametric operator]]
 +
* [[Peirce's law]]
 +
{{col-break}}
 +
* [[Propositional calculus]]
 +
* [[Sole sufficient operator]]
 +
* [[Truth table]]
 +
* [[Universe of discourse]]
 +
* [[Zeroth order logic]]
 +
{{col-end}}
 +
 +
===Relational concepts===
 +
 +
{{col-begin}}
 +
{{col-break}}
 +
* [[Continuous predicate]]
 +
* [[Hypostatic abstraction]]
 +
* [[Logic of relatives]]
 +
* [[Logical matrix]]
 +
{{col-break}}
 +
* [[Relation (mathematics)|Relation]]
 +
* [[Relation composition]]
 +
* [[Relation construction]]
 +
* [[Relation reduction]]
 +
{{col-break}}
 +
* [[Relation theory]]
 +
* [[Relative term]]
 +
* [[Sign relation]]
 +
* [[Triadic relation]]
 +
{{col-end}}
 +
 +
===Information, Inquiry===
 +
 +
{{col-begin}}
 +
{{col-break}}
 +
* [[Inquiry]]
 +
* [[Logic of information]]
 +
{{col-break}}
 +
* [[Descriptive science]]
 +
* [[Normative science]]
 +
{{col-break}}
 +
* [[Pragmatic maxim]]
 +
* [[Pragmatic theory of truth]]
 +
{{col-break}}
 +
* [[Semeiotic]]
 +
* [[Semiotic information]]
 +
{{col-end}}
 +
 +
===Related articles===
 +
 +
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Introduction_to_Inquiry_Driven_Systems Jon Awbrey, &ldquo;Introduction To Inquiry Driven Systems&rdquo;]
 +
 +
* [http://mywikibiz.com/Directory:Jon_Awbrey/Essays/Prospects_For_Inquiry_Driven_Systems Jon Awbrey, &ldquo;Prospects For Inquiry Driven Systems&rdquo;]
 +
 +
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Inquiry_Driven_Systems Jon Awbrey, &ldquo;Inquiry Driven Systems : Inquiry Into Inquiry&rdquo;]
 +
 +
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Propositional_Equation_Reasoning_Systems Jon Awbrey, &ldquo;Propositional Equation Reasoning Systems&rdquo;]
 +
 +
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Differential_Logic_:_Introduction Jon Awbrey, &ldquo;Differential Logic : Introduction&rdquo;]
 +
 +
* [http://planetmath.org/encyclopedia/DifferentialPropositionalCalculus.html Jon Awbrey, &ldquo;Differential Propositional Calculus&rdquo;]
 +
 +
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Differential_Logic_and_Dynamic_Systems_2.0 Jon Awbrey, &ldquo;Differential Logic and Dynamic Systems&rdquo;]
  
 
==Document history==
 
==Document history==

Revision as of 00:41, 11 May 2010

This page belongs to resource collections on Logic and Inquiry.

In logic and mathematics, a multigrade operator \(\Omega\) is a parametric operator with parameter k in the set N of non-negative integers.

The application of a multigrade operator \(\Omega\) to a finite sequence of operands (x1, …, xk) is typically denoted with the parameter k left tacit, as the appropriate application is implicit in the number of operands listed. Thus \(\Omega\)(x1, …, xk) may be taken for \(\Omega\)k(x1, …, xk).

Syllabus

Focal nodes

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Peer nodes

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Relational concepts

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Information, Inquiry

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Related articles

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.

Template:Col-breakTemplate:Col-breakTemplate:Col-end
<sharethis />