Difference between revisions of "User:Jon Awbrey/MNO"
Jon Awbrey (talk | contribs)  | 
				Jon Awbrey (talk | contribs)   (tweak a bit to raise back to consciousness ...)  | 
				||
| (13 intermediate revisions by the same user not shown) | |||
| Line 2: | Line 2: | ||
==Truth Tables==  | ==Truth Tables==  | ||
| + | |||
| + | ===New Version===  | ||
<br>  | <br>  | ||
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"  | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"  | ||
| − | |+ <math>\text{Table   | + | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math>  | 
|- style="background:#f0f0ff"  | |- style="background:#f0f0ff"  | ||
| − | |   | + | | <math>\mathcal{L}_1</math>  | 
| − | + | | <math>\mathcal{L}_2</math>  | |
| − | + | | <math>\mathcal{L}_3</math>  | |
| − | |   | + | | <math>\mathcal{L}_4</math>  | 
| − | |||
| − | |||
| − | |   | ||
| − | |||
| − | |||
| − | |   | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- style="background:#f0f0ff"  | |- style="background:#f0f0ff"  | ||
|    | |    | ||
| align="right" | <math>p\colon\!</math>  | | align="right" | <math>p\colon\!</math>  | ||
| − | | <math>1~1~0~0  | + | | <math>1~1~1~1~0~0~0~0</math>  | 
| − | |||
| − | |||
|    | |    | ||
|- style="background:#f0f0ff"  | |- style="background:#f0f0ff"  | ||
|    | |    | ||
| align="right" | <math>q\colon\!</math>  | | align="right" | <math>q\colon\!</math>  | ||
| − | | <math>1~0~1~0  | + | | <math>1~1~0~0~1~1~0~0</math>  | 
|    | |    | ||
| + | |- style="background:#f0f0ff"  | ||
|    | |    | ||
| + | | align="right" | <math>r\colon\!</math>  | ||
| + | | <math>1~0~1~0~1~0~1~0</math>  | ||
|    | |    | ||
|-  | |-  | ||
|  | |  | ||
<math>\begin{matrix}  | <math>\begin{matrix}  | ||
| − | + | f_{104}  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | f_{  | ||
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{148}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{146}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{97}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{134}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{73}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{41}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{22}  | 
\end{matrix}</math>  | \end{matrix}</math>  | ||
|  | |  | ||
<math>\begin{matrix}  | <math>\begin{matrix}  | ||
| − | + | f_{01101000}  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | f_{10010100}  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | f_{10010010}  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | f_{01100001}  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | f_{10000110}  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | f_{01001001}  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | f_{00101001}  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | f_{00010110}  | |
\end{matrix}</math>  | \end{matrix}</math>  | ||
|  | |  | ||
<math>\begin{matrix}  | <math>\begin{matrix}  | ||
| − | + | 0~1~1~0~1~0~0~0  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | 1~0~0~1~0~1~0~0  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | 1~0~0~1~0~0~1~0  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | 0~1~1~0~0~0~0~1  | |
\\[4pt]  | \\[4pt]  | ||
| − | ~  | + | 1~0~0~0~0~1~1~0  | 
\\[4pt]  | \\[4pt]  | ||
| − | ~~~  | + | 0~1~0~0~1~0~0~1  | 
\\[4pt]  | \\[4pt]  | ||
| − | + | 0~0~1~0~1~0~0~1  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | 0~0~0~1~0~1~1~0  | |
\end{matrix}</math>  | \end{matrix}</math>  | ||
|  | |  | ||
<math>\begin{matrix}  | <math>\begin{matrix}  | ||
| − | \  | + | \texttt{(~p~,~q~,~r~)}  | 
\\[4pt]  | \\[4pt]  | ||
| − | \  | + | \texttt{(~p~,~q~,(r))}  | 
\\[4pt]  | \\[4pt]  | ||
| − | + | \texttt{(~p~,(q),~r~)}  | |
\\[4pt]  | \\[4pt]  | ||
| − | \  | + | \texttt{(~p~,(q),(r))}  | 
\\[4pt]  | \\[4pt]  | ||
| − | + | \texttt{((p),~q~,~r~)}  | |
\\[4pt]  | \\[4pt]  | ||
| − | \  | + | \texttt{((p),~q~,(r))}  | 
\\[4pt]  | \\[4pt]  | ||
| − | p ~  | + | \texttt{((p),(q),~r~)}  | 
\\[4pt]  | \\[4pt]  | ||
| − | \  | + | \texttt{((p),(q),(r))}  | 
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
\end{matrix}</math>  | \end{matrix}</math>  | ||
|-  | |-  | ||
|  | |  | ||
<math>\begin{matrix}  | <math>\begin{matrix}  | ||
| − | + | f_{233}  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | f_{214}  | |
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{182}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{121}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{158}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{109}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{107}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{151}  | 
\end{matrix}</math>  | \end{matrix}</math>  | ||
|  | |  | ||
<math>\begin{matrix}  | <math>\begin{matrix}  | ||
| − | f_{  | + | f_{11101001}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{11010110}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{10110110}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{01111001}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{10011110}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{01101101}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{01101011}  | 
\\[4pt]  | \\[4pt]  | ||
| − | f_{  | + | f_{10010111}  | 
\end{matrix}</math>  | \end{matrix}</math>  | ||
|  | |  | ||
<math>\begin{matrix}  | <math>\begin{matrix}  | ||
| − | 1~0~0~0  | + | 1~1~1~0~1~0~0~1  | 
\\[4pt]  | \\[4pt]  | ||
| − | 1~0~0~1  | + | 1~1~0~1~0~1~1~0  | 
\\[4pt]  | \\[4pt]  | ||
| − | 1~0~1~0  | + | 1~0~1~1~0~1~1~0  | 
\\[4pt]  | \\[4pt]  | ||
| − | 1~0~  | + | 0~1~1~1~1~0~0~1  | 
\\[4pt]  | \\[4pt]  | ||
| − | 1~1~  | + | 1~0~0~1~1~1~1~0  | 
\\[4pt]  | \\[4pt]  | ||
| − | 1~1~0~1  | + | 0~1~1~0~1~1~0~1  | 
\\[4pt]  | \\[4pt]  | ||
| − | 1~1~1~0  | + | 0~1~1~0~1~0~1~1  | 
\\[4pt]  | \\[4pt]  | ||
| − | 1~1~1~1  | + | 1~0~0~1~0~1~1~1  | 
\end{matrix}</math>  | \end{matrix}</math>  | ||
|  | |  | ||
<math>\begin{matrix}  | <math>\begin{matrix}  | ||
| − | + | \texttt{(((p),(q),(r)))}  | |
\\[4pt]  | \\[4pt]  | ||
| − | ((p,~  | + | \texttt{(((p),(q),~r~))}  | 
\\[4pt]  | \\[4pt]  | ||
| − | + | \texttt{(((p),~q~,(r)))}  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | \texttt{(((p),~q~,~r~))}  | |
\\[4pt]  | \\[4pt]  | ||
| − | + | \texttt{((~p~,(q),(r)))}  | |
\\[4pt]  | \\[4pt]  | ||
| − | ((p  | + | \texttt{((~p~,(q),~r~))}  | 
\\[4pt]  | \\[4pt]  | ||
| − | ((p)  | + | \texttt{((~p~,~q~,(r)))}  | 
\\[4pt]  | \\[4pt]  | ||
| − | ((~  | + | \texttt{((~p~,~q~,~r~))}  | 
| − | |||
| − | |||
| − | |||
| − | p ~  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
\end{matrix}</math>  | \end{matrix}</math>  | ||
|}  | |}  | ||
| Line 262: | Line 179: | ||
<br>  | <br>  | ||
| − | + | ===Old Version===  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
<br>  | <br>  | ||
| Line 382: | Line 185: | ||
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f0f0ff; font-weight:bold; text-align:center; width:90%"  | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f0f0ff; font-weight:bold; text-align:center; width:90%"  | ||
|+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math>  | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math>  | ||
| − | | width="  | + | | width="25%" | <math>\mathcal{L}_1</math>  | 
| − | | width="  | + | | width="25%" | <math>\mathcal{L}_2</math>  | 
| − | | width="  | + | | width="25%" | <math>\mathcal{L}_3</math>  | 
| − | | width="  | + | | width="25%" | <math>\mathcal{L}_4</math>  | 
|-  | |-  | ||
|    | |    | ||
| Line 404: | Line 207: | ||
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"  | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"  | ||
|-  | |-  | ||
| − | | width="  | + | | width="25%" | <math>f_{104}\!</math>  | 
| − | | width="  | + | | width="25%" | <math>f_{01101000}\!</math>  | 
| − | | width="  | + | | width="25%" | 0 1 1 0 1 0 0 0  | 
| − | | width="  | + | | width="25%" | <math>( p , q , r )\!</math>  | 
|-  | |-  | ||
| <math>f_{148}\!</math>  | | <math>f_{148}\!</math>  | ||
| Line 446: | Line 249: | ||
{|  align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"  | {|  align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"  | ||
|-  | |-  | ||
| − | | width="  | + | | width="25%" | <math>f_{233}\!</math>  | 
| − | | width="  | + | | width="25%" | <math>f_{11101001}\!</math>  | 
| − | | width="  | + | | width="25%" | 1 1 1 0 1 0 0 1  | 
| − | | width="  | + | | width="25%" | <math>(((p), (q), (r)))\!</math>  | 
|-  | |-  | ||
| <math>f_{214}\!</math>  | | <math>f_{214}\!</math>  | ||
| Line 489: | Line 292: | ||
<br>  | <br>  | ||
| − | + | ==Venn Diagrams==  | |
| − | + | ||
| − | + | ===New Version===  | |
| − | + | ||
| − | + | {| align="center" cellpadding="10" style="text-align:center"  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | | align="  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|  | |  | ||
| − | <  | + | <p>[[Image:Venn Diagram (P,Q,R).jpg|500px]]</p>  | 
| − | + | <p><math>\text{Figure 2.}~~\texttt{(p, q, r)}</math>  | |
| − | + | |}  | |
| − | + | ||
| − | + | {| align="center" cellpadding="10" style="text-align:center"  | |
| − | |||
| − | |||
| − | |||
| − | \\  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|  | |  | ||
| − | <  | + | <p>[[Image:Venn Diagram ((P),(Q),(R)).jpg|500px]]</p>  | 
| − | + | <p><math>\text{Figure 3.}~~\texttt{((p),(q),(r))}</math>  | |
| − | + | |}  | |
| − | + | ||
| − | + | ===Old Version===  | |
| − | + | ||
| − | + | {| align="center" cellpadding="10" style="text-align:center"  | |
| − | |||
| − | \  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|  | |  | ||
| − | <  | + | <p>[[Image:Minimal Negation Operator 1.jpg|500px]]</p>  | 
| − | + | <p><math>\text{Figure 2.} ~~ \texttt{(} p \texttt{,} q \texttt{,} r \texttt{)}</math>  | |
| − | + | |}  | |
| − | + | ||
| − | + | {| align="center" cellpadding="10" style="text-align:center"  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | <  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | <math>\  | ||
| − | |||
| − | |||
| − | |||
| − | \  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | \  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |  | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|  | |  | ||
| − | <  | + | <p>[[Image:Minimal Negation Operator 2.jpg|500px]]</p>  | 
| − | + | <p><math>\text{Figure 3.} ~~ \texttt{((} p \texttt{),(} q \texttt{),(} r \texttt{))}</math>  | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | \  | ||
| − | |||
| − | \  | ||
| − | ((p)  | ||
| − | \  | ||
| − | |||
| − | \  | ||
| − | |||
| − | |||
|}  | |}  | ||
| − | + | *  | |
| − | |||
| − | |||
Latest revision as of 16:10, 28 August 2017
Logical Graphs
Truth Tables
New Version
| \(\mathcal{L}_1\) | \(\mathcal{L}_2\) | \(\mathcal{L}_3\) | \(\mathcal{L}_4\) | 
| \(p\colon\!\) | \(1~1~1~1~0~0~0~0\) | ||
| \(q\colon\!\) | \(1~1~0~0~1~1~0~0\) | ||
| \(r\colon\!\) | \(1~0~1~0~1~0~1~0\) | ||
| 
 \(\begin{matrix} f_{104} \\[4pt] f_{148} \\[4pt] f_{146} \\[4pt] f_{97} \\[4pt] f_{134} \\[4pt] f_{73} \\[4pt] f_{41} \\[4pt] f_{22} \end{matrix}\)  | 
 \(\begin{matrix} f_{01101000} \\[4pt] f_{10010100} \\[4pt] f_{10010010} \\[4pt] f_{01100001} \\[4pt] f_{10000110} \\[4pt] f_{01001001} \\[4pt] f_{00101001} \\[4pt] f_{00010110} \end{matrix}\)  | 
 \(\begin{matrix} 0~1~1~0~1~0~0~0 \\[4pt] 1~0~0~1~0~1~0~0 \\[4pt] 1~0~0~1~0~0~1~0 \\[4pt] 0~1~1~0~0~0~0~1 \\[4pt] 1~0~0~0~0~1~1~0 \\[4pt] 0~1~0~0~1~0~0~1 \\[4pt] 0~0~1~0~1~0~0~1 \\[4pt] 0~0~0~1~0~1~1~0 \end{matrix}\)  | 
 \(\begin{matrix} \texttt{(~p~,~q~,~r~)} \\[4pt] \texttt{(~p~,~q~,(r))} \\[4pt] \texttt{(~p~,(q),~r~)} \\[4pt] \texttt{(~p~,(q),(r))} \\[4pt] \texttt{((p),~q~,~r~)} \\[4pt] \texttt{((p),~q~,(r))} \\[4pt] \texttt{((p),(q),~r~)} \\[4pt] \texttt{((p),(q),(r))} \end{matrix}\)  | 
| 
 \(\begin{matrix} f_{233} \\[4pt] f_{214} \\[4pt] f_{182} \\[4pt] f_{121} \\[4pt] f_{158} \\[4pt] f_{109} \\[4pt] f_{107} \\[4pt] f_{151} \end{matrix}\)  | 
 \(\begin{matrix} f_{11101001} \\[4pt] f_{11010110} \\[4pt] f_{10110110} \\[4pt] f_{01111001} \\[4pt] f_{10011110} \\[4pt] f_{01101101} \\[4pt] f_{01101011} \\[4pt] f_{10010111} \end{matrix}\)  | 
 \(\begin{matrix} 1~1~1~0~1~0~0~1 \\[4pt] 1~1~0~1~0~1~1~0 \\[4pt] 1~0~1~1~0~1~1~0 \\[4pt] 0~1~1~1~1~0~0~1 \\[4pt] 1~0~0~1~1~1~1~0 \\[4pt] 0~1~1~0~1~1~0~1 \\[4pt] 0~1~1~0~1~0~1~1 \\[4pt] 1~0~0~1~0~1~1~1 \end{matrix}\)  | 
 \(\begin{matrix} \texttt{(((p),(q),(r)))} \\[4pt] \texttt{(((p),(q),~r~))} \\[4pt] \texttt{(((p),~q~,(r)))} \\[4pt] \texttt{(((p),~q~,~r~))} \\[4pt] \texttt{((~p~,(q),(r)))} \\[4pt] \texttt{((~p~,(q),~r~))} \\[4pt] \texttt{((~p~,~q~,(r)))} \\[4pt] \texttt{((~p~,~q~,~r~))} \end{matrix}\)  | 
Old Version
| \(\mathcal{L}_1\) | \(\mathcal{L}_2\) | \(\mathcal{L}_3\) | \(\mathcal{L}_4\) | 
| \(p =\!\) | 1 1 1 1 0 0 0 0 | ||
| \(q =\!\) | 1 1 0 0 1 1 0 0 | ||
| \(r =\!\) | 1 0 1 0 1 0 1 0 | 
| \(f_{104}\!\) | \(f_{01101000}\!\) | 0 1 1 0 1 0 0 0 | \(( p , q , r )\!\) | 
| \(f_{148}\!\) | \(f_{10010100}\!\) | 1 0 0 1 0 1 0 0 | \(( p , q , (r))\!\) | 
| \(f_{146}\!\) | \(f_{10010010}\!\) | 1 0 0 1 0 0 1 0 | \(( p , (q), r )\!\) | 
| \(f_{97}\!\) | \(f_{01100001}\!\) | 0 1 1 0 0 0 0 1 | \(( p , (q), (r))\!\) | 
| \(f_{134}\!\) | \(f_{10000110}\!\) | 1 0 0 0 0 1 1 0 | \(((p), q , r )\!\) | 
| \(f_{73}\!\) | \(f_{01001001}\!\) | 0 1 0 0 1 0 0 1 | \(((p), q , (r))\!\) | 
| \(f_{41}\!\) | \(f_{00101001}\!\) | 0 0 1 0 1 0 0 1 | \(((p), (q), r )\!\) | 
| \(f_{22}\!\) | \(f_{00010110}\!\) | 0 0 0 1 0 1 1 0 | \(((p), (q), (r))\!\) | 
| \(f_{233}\!\) | \(f_{11101001}\!\) | 1 1 1 0 1 0 0 1 | \((((p), (q), (r)))\!\) | 
| \(f_{214}\!\) | \(f_{11010110}\!\) | 1 1 0 1 0 1 1 0 | \((((p), (q), r ))\!\) | 
| \(f_{182}\!\) | \(f_{10110110}\!\) | 1 0 1 1 0 1 1 0 | \((((p), q , (r)))\!\) | 
| \(f_{121}\!\) | \(f_{01111001}\!\) | 0 1 1 1 1 0 0 1 | \((((p), q , r ))\!\) | 
| \(f_{158}\!\) | \(f_{10011110}\!\) | 1 0 0 1 1 1 1 0 | \((( p , (q), (r)))\!\) | 
| \(f_{109}\!\) | \(f_{01101101}\!\) | 0 1 1 0 1 1 0 1 | \((( p , (q), r ))\!\) | 
| \(f_{107}\!\) | \(f_{01101011}\!\) | 0 1 1 0 1 0 1 1 | \((( p , q , (r)))\!\) | 
| \(f_{151}\!\) | \(f_{10010111}\!\) | 1 0 0 1 0 1 1 1 | \((( p , q , r ))\!\) | 
Venn Diagrams
New Version
| 
 \(\text{Figure 2.}~~\texttt{(p, q, r)}\)  | 
| 
 \(\text{Figure 3.}~~\texttt{((p),(q),(r))}\)  | 
Old Version
| 
 \(\text{Figure 2.} ~~ \texttt{(} p \texttt{,} q \texttt{,} r \texttt{)}\)  | 
| 
 \(\text{Figure 3.} ~~ \texttt{((} p \texttt{),(} q \texttt{),(} r \texttt{))}\)  |