Difference between revisions of "User:Jon Awbrey/SANDBOX"
Jon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) (→TextTT) |
||
(39 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | == | + | ==Format Samples • Wiki Text== |
+ | |||
+ | ===MathBB, MathBF, MathCal=== | ||
+ | |||
+ | A set of logical features, <math>\mathcal{A} = \{ a_1, \ldots, a_n \},</math> affords a basis for generating an <math>n</math>-dimensional universe of discourse, written <math>A^\bullet = [ \mathcal{A} ] = [ a_1, \ldots, a_n ].</math> It is useful to consider a universe of discourse as a categorical object that incorporates both the set of points <math>A = \langle a_1, \ldots, a_n \rangle</math> and the set of propositions <math>A^\uparrow = \{ f : A \to \mathbb{B} \}</math> that are implicit with the ordinary picture of a venn diagram on <math>n</math> features. Accordingly, the universe of discourse <math>A^\bullet</math> may be regarded as an ordered pair <math>(A, A^\uparrow)</math> having the type <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})),</math> and this last type designation may be abbreviated as <math>\mathbb{B}^n\ +\!\to \mathbb{B},</math> or even more succinctly as <math>[ \mathbb{B}^n ].</math> For convenience, the data type of a finite set on <math>n</math> elements may be indicated by either one of the equivalent notations, <math>[n]</math> or <math>\mathbf{n}.</math> | ||
+ | |||
+ | ===MathFrak=== | ||
+ | |||
+ | <p><math>\begin{array}{lccccccccccc} | ||
+ | \mathfrak{M} | ||
+ | & = & \{ & \mathfrak{m}_1 & , & \mathfrak{m}_2 & , & \mathfrak{m}_3 & , & \mathfrak{m}_4 & \} | ||
+ | \\ | ||
+ | & = & \{ & \text{“ ”} & , & \text{“(”} & , & \text{“,”} & , & \text{“)”} & \} | ||
+ | \\ | ||
+ | & = & \{ & \mathrm{blank} & , & \mathrm{links} & , & \mathrm{comma} & , & \mathrm{right} & \} | ||
+ | \end{array}</math></p> | ||
+ | |||
+ | ===TextTT=== | ||
+ | |||
+ | For the initial case <math>k = 0,</math> the bound connective is an empty closure, an expression taking one of the forms <math>\texttt{()}, \texttt{( )}, \texttt{( )}, \ldots</math> with any number of spaces between the parentheses, all of which have the same denotation among propositions. | ||
+ | |||
+ | For the generic case <math>k > 0,</math> the bound connective takes the form <math>\texttt{(} s_1 \texttt{,} \ldots \texttt{,} s_k \texttt{)}.</math> | ||
+ | |||
+ | ==Format Samples • Screenshots== | ||
+ | |||
+ | ===MathJax Fail=== | ||
+ | |||
+ | [[File:Format Samples • MathJax Fail.png|640px]] | ||
+ | |||
+ | ===MathML View=== | ||
+ | |||
+ | [[File:Format Samples • MathML View.png|640px]] | ||
+ | |||
+ | ==Logic of Relatives== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellspacing="6" width="90%" | ||
+ | | align="center" | | ||
+ | <pre> | ||
+ | Table 3. Relational Composition | ||
+ | o---------o---------o---------o---------o | ||
+ | | # !1! | !1! | !1! | | ||
+ | o=========o=========o=========o=========o | ||
+ | | L # X | Y | | | ||
+ | o---------o---------o---------o---------o | ||
+ | | M # | Y | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | | L o M # X | | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | </pre> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
+ | |+ <math>\text{Table 3. Relational Composition}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>L\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | | | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>M\!</math> | ||
+ | | | ||
+ | | <math>Y\!</math> | ||
+ | | <math>Z\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>L \circ M</math> | ||
+ | | <math>X\!</math> | ||
+ | | | ||
+ | | <math>Z\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellspacing="6" width="90%" | ||
+ | | align="center" | | ||
+ | <pre> | ||
+ | Table 9. Composite of Triadic and Dyadic Relations | ||
+ | o---------o---------o---------o---------o---------o | ||
+ | | # !1! | !1! | !1! | !1! | | ||
+ | o=========o=========o=========o=========o=========o | ||
+ | | G # T | U | | V | | ||
+ | o---------o---------o---------o---------o---------o | ||
+ | | L # | U | W | | | ||
+ | o---------o---------o---------o---------o---------o | ||
+ | | G o L # T | | W | V | | ||
+ | o---------o---------o---------o---------o---------o | ||
+ | </pre> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:75%" | ||
+ | |+ <math>\text{Table 9. Composite of Triadic and Dyadic Relations}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | | ||
+ | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>G\!</math> | ||
+ | | <math>T\!</math> | ||
+ | | <math>U\!</math> | ||
+ | | | ||
+ | | <math>V\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>L\!</math> | ||
+ | | | ||
+ | | <math>U\!</math> | ||
+ | | <math>W\!</math> | ||
+ | | | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>G \circ L</math> | ||
+ | | <math>T\!</math> | ||
+ | | | ||
+ | | <math>W\!</math> | ||
+ | | <math>V\!</math> | ||
+ | |} | ||
− | + | <br> | |
+ | {| align="center" cellspacing="6" width="90%" | ||
+ | | align="center" | | ||
<pre> | <pre> | ||
− | + | Table 13. Another Brand of Composition | |
− | + | o---------o---------o---------o---------o | |
+ | | # !1! | !1! | !1! | | ||
+ | o=========o=========o=========o=========o | ||
+ | | G # X | Y | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | | T # | Y | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | | G o T # X | | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | </pre> | ||
+ | |} | ||
− | + | <br> | |
− | + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | |
+ | |+ <math>\text{Table 13. Another Brand of Composition}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>G\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | | <math>Z\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>T\!</math> | ||
+ | | | ||
+ | | <math>Y\!</math> | ||
+ | | <math>Z\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>G \circ T</math> | ||
+ | | <math>X\!</math> | ||
+ | | | ||
+ | | <math>Z\!</math> | ||
+ | |} | ||
− | + | <br> | |
− | + | {| align="center" cellspacing="6" width="90%" | |
− | + | | align="center" | | |
+ | <pre> | ||
+ | Table 15. Conjunction Via Composition | ||
+ | o---------o---------o---------o---------o | ||
+ | | # !1! | !1! | !1! | | ||
+ | o=========o=========o=========o=========o | ||
+ | | L, # X | X | Y | | ||
+ | o---------o---------o---------o---------o | ||
+ | | S # | X | Y | | ||
+ | o---------o---------o---------o---------o | ||
+ | | L , S # X | | Y | | ||
+ | o---------o---------o---------o---------o | ||
+ | </pre> | ||
+ | |} | ||
− | + | <br> | |
− | + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | |
+ | |+ <math>\text{Table 15. Conjunction Via Composition}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>L,\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>S\!</math> | ||
+ | | | ||
+ | | <math>X\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>L,\!S</math> | ||
+ | | <math>X\!</math> | ||
+ | | | ||
+ | | <math>Y\!</math> | ||
+ | |} | ||
− | + | <br> | |
+ | |||
+ | {| align="center" cellspacing="6" width="90%" | ||
+ | | align="center" | | ||
+ | <pre> | ||
+ | Table 18. Relational Composition P o Q | ||
+ | o---------o---------o---------o---------o | ||
+ | | # !1! | !1! | !1! | | ||
+ | o=========o=========o=========o=========o | ||
+ | | P # X | Y | | | ||
+ | o---------o---------o---------o---------o | ||
+ | | Q # | Y | Z | | ||
+ | o---------o---------o---------o---------o | ||
+ | | P o Q # X | | Z | | ||
+ | o---------o---------o---------o---------o | ||
</pre> | </pre> | ||
+ | |} | ||
− | + | <br> | |
− | < | + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
+ | |+ <math>\text{Table 18. Relational Composition}~ P \circ Q</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>P\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | | | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>Q\!</math> | ||
+ | | | ||
+ | | <math>Y\!</math> | ||
+ | | <math>Z\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>P \circ Q</math> | ||
+ | | <math>X\!</math> | ||
+ | | | ||
+ | | <math>Z\!</math> | ||
+ | |} | ||
− | < | + | <br> |
− | < | + | {| align="center" cellspacing="6" width="90%" |
+ | | align="center" | | ||
+ | <pre> | ||
+ | Table 20. Arrow: J(L(u, v)) = K(Ju, Jv) | ||
+ | o---------o---------o---------o---------o | ||
+ | | # J | J | J | | ||
+ | o=========o=========o=========o=========o | ||
+ | | K # X | X | X | | ||
+ | o---------o---------o---------o---------o | ||
+ | | L # Y | Y | Y | | ||
+ | o---------o---------o---------o---------o | ||
+ | </pre> | ||
+ | |} | ||
− | < | + | <br> |
− | < | + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
− | < | + | |+ <math>\text{Table 20. Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math> |
+ | |- | ||
+ | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> | ||
+ | | style="border-bottom:1px solid black; width:25%" | <math>J\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>K\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>X\!</math> | ||
+ | | <math>X\!</math> | ||
+ | |- | ||
+ | | style="border-right:1px solid black" | <math>L\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | | <math>Y\!</math> | ||
+ | |} | ||
− | < | + | <br> |
− | + | ==Grammar Stuff== | |
− | < | + | <br> |
− | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | |
+ | |+ '''Table 13. Algorithmic Translation Rules''' | ||
+ | |- style="background:whitesmoke" | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%" | ||
+ | | width="33%" | <math>\text{Sentence in PARCE}\!</math> | ||
+ | | align="center" | <math>\xrightarrow{\operatorname{Parse}}</math> | ||
+ | | width="33%" | <math>\text{Graph in PARC}\!</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" | ||
+ | | width="33%" | <math>\operatorname{Conc}^0</math> | ||
+ | | align="center" | <math>\xrightarrow{\operatorname{Parse}}</math> | ||
+ | | width="33%" | <math>\operatorname{Node}^0</math> | ||
+ | |- | ||
+ | | width="33%" | <math>\operatorname{Conc}_{j=1}^k s_j</math> | ||
+ | | align="center" | <math>\xrightarrow{\operatorname{Parse}}</math> | ||
+ | | width="33%" | <math>\operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j)</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" | ||
+ | | width="33%" | <math>\operatorname{Surc}^0</math> | ||
+ | | align="center" | <math>\xrightarrow{\operatorname{Parse}}</math> | ||
+ | | width="33%" | <math>\operatorname{Lobe}^0</math> | ||
+ | |- | ||
+ | | width="33%" | <math>\operatorname{Surc}_{j=1}^k s_j</math> | ||
+ | | align="center" | <math>\xrightarrow{\operatorname{Parse}}</math> | ||
+ | | width="33%" | <math>\operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j)</math> | ||
+ | |} | ||
+ | |} | ||
− | < | + | <br> |
− | < | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
− | < | + | |+ '''Table 14.1 Semantic Translation : Functional Form''' |
+ | |- style="background:whitesmoke" | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%" | ||
+ | | width="20%" | <math>\operatorname{Sentence}</math> | ||
+ | | width="20%" | <math>\xrightarrow[\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}]{\operatorname{Parse}}</math> | ||
+ | | width="20%" | <math>\operatorname{Graph}</math> | ||
+ | | width="20%" | <math>\xrightarrow[\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}]{\operatorname{Denotation}}</math> | ||
+ | | width="20%" | <math>\operatorname{Proposition}</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" | ||
+ | | width="20%" | <math>s_j\!</math> | ||
+ | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> | ||
+ | | width="20%" | <math>C_j\!</math> | ||
+ | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> | ||
+ | | width="20%" | <math>q_j\!</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" | ||
+ | | width="20%" | <math>\operatorname{Conc}^0</math> | ||
+ | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> | ||
+ | | width="20%" | <math>\operatorname{Node}^0</math> | ||
+ | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> | ||
+ | | width="20%" | <math>\underline{1}</math> | ||
+ | |- | ||
+ | | width="20%" | <math>\operatorname{Conc}^k_j s_j</math> | ||
+ | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> | ||
+ | | width="20%" | <math>\operatorname{Node}^k_j C_j</math> | ||
+ | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> | ||
+ | | width="20%" | <math>\operatorname{Conj}^k_j q_j</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" | ||
+ | | width="20%" | <math>\operatorname{Surc}^0</math> | ||
+ | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> | ||
+ | | width="20%" | <math>\operatorname{Lobe}^0</math> | ||
+ | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> | ||
+ | | width="20%" | <math>\underline{0}</math> | ||
+ | |- | ||
+ | | width="20%" | <math>\operatorname{Surc}^k_j s_j</math> | ||
+ | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> | ||
+ | | width="20%" | <math>\operatorname{Lobe}^k_j C_j</math> | ||
+ | | width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math> | ||
+ | | width="20%" | <math>\operatorname{Surj}^k_j q_j</math> | ||
+ | |} | ||
+ | |} | ||
− | < | + | <br> |
− | </ | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
+ | |+ '''Table 14.2 Semantic Translation : Equational Form''' | ||
+ | |- style="background:whitesmoke" | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%" | ||
+ | | width="20%" | <math>\downharpoonleft \operatorname{Sentence} \downharpoonright</math> | ||
+ | | width="20%" | <math>\stackrel{\operatorname{Parse}}{=}</math> | ||
+ | | width="20%" | <math>\downharpoonleft \operatorname{Graph} \downharpoonright</math> | ||
+ | | width="20%" | <math>\stackrel{\operatorname{Denotation}}{=}</math> | ||
+ | | width="20%" | <math>\operatorname{Proposition}</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" | ||
+ | | width="20%" | <math>\downharpoonleft s_j \downharpoonright</math> | ||
+ | | width="20%" | <math>=\!</math> | ||
+ | | width="20%" | <math>\downharpoonleft C_j \downharpoonright</math> | ||
+ | | width="20%" | <math>=\!</math> | ||
+ | | width="20%" | <math>q_j\!</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" | ||
+ | | width="20%" | <math>\downharpoonleft \operatorname{Conc}^0 \downharpoonright</math> | ||
+ | | width="20%" | <math>=\!</math> | ||
+ | | width="20%" | <math>\downharpoonleft \operatorname{Node}^0 \downharpoonright</math> | ||
+ | | width="20%" | <math>=\!</math> | ||
+ | | width="20%" | <math>\underline{1}</math> | ||
+ | |- | ||
+ | | width="20%" | <math>\downharpoonleft \operatorname{Conc}^k_j s_j \downharpoonright</math> | ||
+ | | width="20%" | <math>=\!</math> | ||
+ | | width="20%" | <math>\downharpoonleft \operatorname{Node}^k_j C_j \downharpoonright</math> | ||
+ | | width="20%" | <math>=\!</math> | ||
+ | | width="20%" | <math>\operatorname{Conj}^k_j q_j</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| align="center" border="0" cellpadding="8" cellspacing="0" width="100%" | ||
+ | | width="20%" | <math>\downharpoonleft \operatorname{Surc}^0 \downharpoonright</math> | ||
+ | | width="20%" | <math>=\!</math> | ||
+ | | width="20%" | <math>\downharpoonleft \operatorname{Lobe}^0 \downharpoonright</math> | ||
+ | | width="20%" | <math>=\!</math> | ||
+ | | width="20%" | <math>\underline{0}</math> | ||
+ | |- | ||
+ | | width="20%" | <math>\downharpoonleft \operatorname{Surc}^k_j s_j \downharpoonright</math> | ||
+ | | width="20%" | <math>=\!</math> | ||
+ | | width="20%" | <math>\downharpoonleft \operatorname{Lobe}^k_j C_j \downharpoonright</math> | ||
+ | | width="20%" | <math>=\!</math> | ||
+ | | width="20%" | <math>\operatorname{Surj}^k_j q_j</math> | ||
+ | |} | ||
+ | |} | ||
+ | |||
+ | <br> | ||
==Table Stuff== | ==Table Stuff== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
+ | |+ '''Table 15. Boolean Functions on Zero Variables''' | ||
+ | |- style="background:whitesmoke" | ||
+ | | width="14%" | <math>F\!</math> | ||
+ | | width="14%" | <math>F\!</math> | ||
+ | | width="48%" | <math>F()\!</math> | ||
+ | | width="24%" | <math>F\!</math> | ||
+ | |- | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>F_0^{(0)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>(~)</math> | ||
+ | |- | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>F_1^{(0)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>((~))</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%" | ||
+ | |+ '''Table 16. Boolean Functions on One Variable''' | ||
+ | |- style="background:whitesmoke" | ||
+ | | width="14%" | <math>F\!</math> | ||
+ | | width="14%" | <math>F\!</math> | ||
+ | | colspan="2" | <math>F(x)\!</math> | ||
+ | | width="24%" | <math>F\!</math> | ||
+ | |- style="background:whitesmoke" | ||
+ | | width="14%" | | ||
+ | | width="14%" | | ||
+ | | width="24%" | <math>F(\underline{1})</math> | ||
+ | | width="24%" | <math>F(\underline{0})</math> | ||
+ | | width="24%" | | ||
+ | |- | ||
+ | | <math>F_0^{(1)}\!</math> | ||
+ | | <math>F_{00}^{(1)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>(~)</math> | ||
+ | |- | ||
+ | | <math>F_1^{(1)}\!</math> | ||
+ | | <math>F_{01}^{(1)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>(x)\!</math> | ||
+ | |- | ||
+ | | <math>F_2^{(1)}\!</math> | ||
+ | | <math>F_{10}^{(1)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>x\!</math> | ||
+ | |- | ||
+ | | <math>F_3^{(1)}\!</math> | ||
+ | | <math>F_{11}^{(1)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>((~))</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:center; width:90%" | ||
+ | |+ '''Table 17. Boolean Functions on Two Variables''' | ||
+ | |- style="background:whitesmoke" | ||
+ | | width="14%" | <math>F\!</math> | ||
+ | | width="14%" | <math>F\!</math> | ||
+ | | colspan="4" | <math>F(x, y)\!</math> | ||
+ | | width="24%" | <math>F\!</math> | ||
+ | |- style="background:whitesmoke" | ||
+ | | width="14%" | | ||
+ | | width="14%" | | ||
+ | | width="12%" | <math>F(\underline{1}, \underline{1})</math> | ||
+ | | width="12%" | <math>F(\underline{1}, \underline{0})</math> | ||
+ | | width="12%" | <math>F(\underline{0}, \underline{1})</math> | ||
+ | | width="12%" | <math>F(\underline{0}, \underline{0})</math> | ||
+ | | width="24%" | | ||
+ | |- | ||
+ | | <math>F_{0}^{(2)}\!</math> | ||
+ | | <math>F_{0000}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>(~)</math> | ||
+ | |- | ||
+ | | <math>F_{1}^{(2)}\!</math> | ||
+ | | <math>F_{0001}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>(x)(y)\!</math> | ||
+ | |- | ||
+ | | <math>F_{2}^{(2)}\!</math> | ||
+ | | <math>F_{0010}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>(x) y\!</math> | ||
+ | |- | ||
+ | | <math>F_{3}^{(2)}\!</math> | ||
+ | | <math>F_{0011}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>(x)\!</math> | ||
+ | |- | ||
+ | | <math>F_{4}^{(2)}\!</math> | ||
+ | | <math>F_{0100}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>x (y)\!</math> | ||
+ | |- | ||
+ | | <math>F_{5}^{(2)}\!</math> | ||
+ | | <math>F_{0101}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>(y)\!</math> | ||
+ | |- | ||
+ | | <math>F_{6}^{(2)}\!</math> | ||
+ | | <math>F_{0110}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>(x, y)\!</math> | ||
+ | |- | ||
+ | | <math>F_{7}^{(2)}\!</math> | ||
+ | | <math>F_{0111}^{(2)}\!</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>(x y)\!</math> | ||
+ | |- | ||
+ | | <math>F_{8}^{(2)}\!</math> | ||
+ | | <math>F_{1000}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>x y\!</math> | ||
+ | |- | ||
+ | | <math>F_{9}^{(2)}\!</math> | ||
+ | | <math>F_{1001}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>((x, y))\!</math> | ||
+ | |- | ||
+ | | <math>F_{10}^{(2)}\!</math> | ||
+ | | <math>F_{1010}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>y\!</math> | ||
+ | |- | ||
+ | | <math>F_{11}^{(2)}\!</math> | ||
+ | | <math>F_{1011}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>(x (y))\!</math> | ||
+ | |- | ||
+ | | <math>F_{12}^{(2)}\!</math> | ||
+ | | <math>F_{1100}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>x\!</math> | ||
+ | |- | ||
+ | | <math>F_{13}^{(2)}\!</math> | ||
+ | | <math>F_{1101}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>((x)y)\!</math> | ||
+ | |- | ||
+ | | <math>F_{14}^{(2)}\!</math> | ||
+ | | <math>F_{1110}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{0}</math> | ||
+ | | <math>((x)(y))\!</math> | ||
+ | |- | ||
+ | | <math>F_{15}^{(2)}\!</math> | ||
+ | | <math>F_{1111}^{(2)}\!</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>\underline{1}</math> | ||
+ | | <math>((~))</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ---- | ||
<br> | <br> |
Latest revision as of 11:18, 14 October 2025
Format Samples • Wiki Text
MathBB, MathBF, MathCal
A set of logical features, \(\mathcal{A} = \{ a_1, \ldots, a_n \},\) affords a basis for generating an \(n\)-dimensional universe of discourse, written \(A^\bullet = [ \mathcal{A} ] = [ a_1, \ldots, a_n ].\) It is useful to consider a universe of discourse as a categorical object that incorporates both the set of points \(A = \langle a_1, \ldots, a_n \rangle\) and the set of propositions \(A^\uparrow = \{ f : A \to \mathbb{B} \}\) that are implicit with the ordinary picture of a venn diagram on \(n\) features. Accordingly, the universe of discourse \(A^\bullet\) may be regarded as an ordered pair \((A, A^\uparrow)\) having the type \((\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})),\) and this last type designation may be abbreviated as \(\mathbb{B}^n\ +\!\to \mathbb{B},\) or even more succinctly as \([ \mathbb{B}^n ].\) For convenience, the data type of a finite set on \(n\) elements may be indicated by either one of the equivalent notations, \([n]\) or \(\mathbf{n}.\)
MathFrak
\(\begin{array}{lccccccccccc} \mathfrak{M} & = & \{ & \mathfrak{m}_1 & , & \mathfrak{m}_2 & , & \mathfrak{m}_3 & , & \mathfrak{m}_4 & \} \\ & = & \{ & \text{“ ”} & , & \text{“(”} & , & \text{“,”} & , & \text{“)”} & \} \\ & = & \{ & \mathrm{blank} & , & \mathrm{links} & , & \mathrm{comma} & , & \mathrm{right} & \} \end{array}\)
TextTT
For the initial case \(k = 0,\) the bound connective is an empty closure, an expression taking one of the forms \(\texttt{()}, \texttt{( )}, \texttt{( )}, \ldots\) with any number of spaces between the parentheses, all of which have the same denotation among propositions.
For the generic case \(k > 0,\) the bound connective takes the form \(\texttt{(} s_1 \texttt{,} \ldots \texttt{,} s_k \texttt{)}.\)
Format Samples • Screenshots
MathJax Fail
MathML View
Logic of Relatives
Table 3. Relational Composition o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | L # X | Y | | o---------o---------o---------o---------o | M # | Y | Z | o---------o---------o---------o---------o | L o M # X | | Z | o---------o---------o---------o---------o |
\(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
\(L\!\) | \(X\!\) | \(Y\!\) | |
\(M\!\) | \(Y\!\) | \(Z\!\) | |
\(L \circ M\) | \(X\!\) | \(Z\!\) |
Table 9. Composite of Triadic and Dyadic Relations o---------o---------o---------o---------o---------o | # !1! | !1! | !1! | !1! | o=========o=========o=========o=========o=========o | G # T | U | | V | o---------o---------o---------o---------o---------o | L # | U | W | | o---------o---------o---------o---------o---------o | G o L # T | | W | V | o---------o---------o---------o---------o---------o |
\(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
\(G\!\) | \(T\!\) | \(U\!\) | \(V\!\) | |
\(L\!\) | \(U\!\) | \(W\!\) | ||
\(G \circ L\) | \(T\!\) | \(W\!\) | \(V\!\) |
Table 13. Another Brand of Composition o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | G # X | Y | Z | o---------o---------o---------o---------o | T # | Y | Z | o---------o---------o---------o---------o | G o T # X | | Z | o---------o---------o---------o---------o |
\(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
\(G\!\) | \(X\!\) | \(Y\!\) | \(Z\!\) |
\(T\!\) | \(Y\!\) | \(Z\!\) | |
\(G \circ T\) | \(X\!\) | \(Z\!\) |
Table 15. Conjunction Via Composition o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | L, # X | X | Y | o---------o---------o---------o---------o | S # | X | Y | o---------o---------o---------o---------o | L , S # X | | Y | o---------o---------o---------o---------o |
\(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
\(L,\!\) | \(X\!\) | \(X\!\) | \(Y\!\) |
\(S\!\) | \(X\!\) | \(Y\!\) | |
\(L,\!S\) | \(X\!\) | \(Y\!\) |
Table 18. Relational Composition P o Q o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | P # X | Y | | o---------o---------o---------o---------o | Q # | Y | Z | o---------o---------o---------o---------o | P o Q # X | | Z | o---------o---------o---------o---------o |
\(\mathit{1}\!\) | \(\mathit{1}\!\) | \(\mathit{1}\!\) | |
\(P\!\) | \(X\!\) | \(Y\!\) | |
\(Q\!\) | \(Y\!\) | \(Z\!\) | |
\(P \circ Q\) | \(X\!\) | \(Z\!\) |
Table 20. Arrow: J(L(u, v)) = K(Ju, Jv) o---------o---------o---------o---------o | # J | J | J | o=========o=========o=========o=========o | K # X | X | X | o---------o---------o---------o---------o | L # Y | Y | Y | o---------o---------o---------o---------o |
\(J\!\) | \(J\!\) | \(J\!\) | |
\(K\!\) | \(X\!\) | \(X\!\) | \(X\!\) |
\(L\!\) | \(Y\!\) | \(Y\!\) | \(Y\!\) |
Grammar Stuff
| ||||||
| ||||||
|
| ||||||||||
| ||||||||||
| ||||||||||
|
| ||||||||||
| ||||||||||
| ||||||||||
|
Table Stuff
\(F\!\) | \(F\!\) | \(F()\!\) | \(F\!\) |
\(\underline{0}\) | \(F_0^{(0)}\!\) | \(\underline{0}\) | \((~)\) |
\(\underline{1}\) | \(F_1^{(0)}\!\) | \(\underline{1}\) | \(((~))\) |
\(F\!\) | \(F\!\) | \(F(x)\!\) | \(F\!\) | |
\(F(\underline{1})\) | \(F(\underline{0})\) | |||
\(F_0^{(1)}\!\) | \(F_{00}^{(1)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \((~)\) |
\(F_1^{(1)}\!\) | \(F_{01}^{(1)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \((x)\!\) |
\(F_2^{(1)}\!\) | \(F_{10}^{(1)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(x\!\) |
\(F_3^{(1)}\!\) | \(F_{11}^{(1)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(((~))\) |
\(F\!\) | \(F\!\) | \(F(x, y)\!\) | \(F\!\) | |||
\(F(\underline{1}, \underline{1})\) | \(F(\underline{1}, \underline{0})\) | \(F(\underline{0}, \underline{1})\) | \(F(\underline{0}, \underline{0})\) | |||
\(F_{0}^{(2)}\!\) | \(F_{0000}^{(2)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{0}\) | \((~)\) |
\(F_{1}^{(2)}\!\) | \(F_{0001}^{(2)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{1}\) | \((x)(y)\!\) |
\(F_{2}^{(2)}\!\) | \(F_{0010}^{(2)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{0}\) | \((x) y\!\) |
\(F_{3}^{(2)}\!\) | \(F_{0011}^{(2)}\!\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{1}\) | \((x)\!\) |
\(F_{4}^{(2)}\!\) | \(F_{0100}^{(2)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{0}\) | \(x (y)\!\) |
\(F_{5}^{(2)}\!\) | \(F_{0101}^{(2)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{1}\) | \((y)\!\) |
\(F_{6}^{(2)}\!\) | \(F_{0110}^{(2)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{0}\) | \((x, y)\!\) |
\(F_{7}^{(2)}\!\) | \(F_{0111}^{(2)}\!\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{1}\) | \((x y)\!\) |
\(F_{8}^{(2)}\!\) | \(F_{1000}^{(2)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{0}\) | \(x y\!\) |
\(F_{9}^{(2)}\!\) | \(F_{1001}^{(2)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{0}\) | \(\underline{1}\) | \(((x, y))\!\) |
\(F_{10}^{(2)}\!\) | \(F_{1010}^{(2)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{0}\) | \(y\!\) |
\(F_{11}^{(2)}\!\) | \(F_{1011}^{(2)}\!\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{1}\) | \(\underline{1}\) | \((x (y))\!\) |
\(F_{12}^{(2)}\!\) | \(F_{1100}^{(2)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{0}\) | \(x\!\) |
\(F_{13}^{(2)}\!\) | \(F_{1101}^{(2)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{0}\) | \(\underline{1}\) | \(((x)y)\!\) |
\(F_{14}^{(2)}\!\) | \(F_{1110}^{(2)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{0}\) | \(((x)(y))\!\) |
\(F_{15}^{(2)}\!\) | \(F_{1111}^{(2)}\!\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{1}\) | \(\underline{1}\) | \(((~))\) |
fi‹x, y› |
|
|
|
fj‹u, v› | ||||||
|
|
|
A |
|
|
|
B | ||||||
|
|
|
|
|
| ||||||
|
|
|
|
|
|