Difference between revisions of "User:Jon Awbrey/SANDBOX"

MyWikiBiz, Author Your Legacy — Wednesday October 15, 2025
Jump to navigationJump to search
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
==Format Samples • Wiki Text==
 +
 +
===MathBB, MathBF, MathCal===
 +
 +
A set of logical features, <math>\mathcal{A} = \{ a_1, \ldots, a_n \},</math> affords a basis for generating an <math>n</math>-dimensional universe of discourse, written <math>A^\bullet = [ \mathcal{A} ] = [ a_1, \ldots, a_n ].</math>  It is useful to consider a universe of discourse as a categorical object that incorporates both the set of points <math>A = \langle a_1, \ldots, a_n \rangle</math> and the set of propositions <math>A^\uparrow = \{ f : A \to \mathbb{B} \}</math> that are implicit with the ordinary picture of a venn diagram on <math>n</math> features.  Accordingly, the universe of discourse <math>A^\bullet</math> may be regarded as an ordered pair <math>(A, A^\uparrow)</math> having the type <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})),</math> and this last type designation may be abbreviated as <math>\mathbb{B}^n\ +\!\to \mathbb{B},</math> or even more succinctly as <math>[ \mathbb{B}^n ].</math>  For convenience, the data type of a finite set on <math>n</math> elements may be indicated by either one of the equivalent notations, <math>[n]</math> or <math>\mathbf{n}.</math>
 +
 +
===MathFrak===
 +
 +
<p><math>\begin{array}{lccccccccccc}
 +
\mathfrak{M}
 +
& = & \{ & \mathfrak{m}_1 & , & \mathfrak{m}_2 & , & \mathfrak{m}_3 & , & \mathfrak{m}_4 & \}
 +
\\
 +
& = & \{ & \text{“ ”} & , & \text{“(”} & , & \text{“,”} & , & \text{“)”} & \}
 +
\\
 +
& = & \{ & \mathrm{blank} & , & \mathrm{links} & , & \mathrm{comma} & , & \mathrm{right} & \}
 +
\end{array}</math></p>
 +
 +
===TextTT===
 +
 +
For the initial case <math>k = 0,</math> the bound connective is an empty closure, an expression taking one of the forms <math>\texttt{()}, \texttt{( )}, \texttt{(  )}, \ldots</math> with any number of spaces between the parentheses, all of which have the same denotation among propositions.
 +
 +
For the generic case <math>k > 0,</math> the bound connective takes the form <math>\texttt{(} s_1 \texttt{,} \ldots \texttt{,} s_k \texttt{)}.</math>
 +
 +
==Format Samples &bull; Screenshots==
 +
 +
===MathJax Fail===
 +
 +
[[File:Format Samples &bull; MathJax Fail.png|640px]]
 +
 +
===MathML View===
 +
 +
[[File:Format Samples &bull; MathML View.png|640px]]
 +
 
==Logic of Relatives==
 
==Logic of Relatives==
  
Line 22: Line 55:
  
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
|+ '''Table 3.  Relational Composition'''
+
|+ <math>\text{Table 3.  Relational Composition}\!</math>
 
|-
 
|-
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
Line 65: Line 98:
 
<br>
 
<br>
  
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:70%"
+
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:75%"
|+ '''Table 9.  Composite of Triadic and Dyadic Relations'''
+
|+ <math>\text{Table 9.  Composite of Triadic and Dyadic Relations}\!</math>
 
|-
 
|-
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | &nbsp;
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | &nbsp;
Line 91: Line 124:
 
| <math>W\!</math>
 
| <math>W\!</math>
 
| <math>V\!</math>
 
| <math>V\!</math>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 13.  Another Brand of Composition
 +
o---------o---------o---------o---------o
 +
|        #  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o
 +
|    G    #    X    |    Y    |    Z    |
 +
o---------o---------o---------o---------o
 +
|    T    #        |    Y    |    Z    |
 +
o---------o---------o---------o---------o
 +
|  G o T  #    X    |        |    Z    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 13.  Another Brand of Composition}\!</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>G\!</math>
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
| <math>Z\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>T\!</math>
 +
| &nbsp;
 +
| <math>Y\!</math>
 +
| <math>Z\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>G \circ T</math>
 +
| <math>X\!</math>
 +
| &nbsp;
 +
| <math>Z\!</math>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 15.  Conjunction Via Composition
 +
o---------o---------o---------o---------o
 +
|        #  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o
 +
|    L,  #    X    |    X    |    Y    |
 +
o---------o---------o---------o---------o
 +
|    S    #        |    X    |    Y    |
 +
o---------o---------o---------o---------o
 +
|  L , S  #    X    |        |    Y    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 15.  Conjunction Via Composition}\!</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L,\!</math>
 +
| <math>X\!</math>
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>S\!</math>
 +
| &nbsp;
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L,\!S</math>
 +
| <math>X\!</math>
 +
| &nbsp;
 +
| <math>Y\!</math>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 18.  Relational Composition P o Q
 +
o---------o---------o---------o---------o
 +
|        #  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o
 +
|    P    #    X    |    Y    |        |
 +
o---------o---------o---------o---------o
 +
|    Q    #        |    Y    |    Z    |
 +
o---------o---------o---------o---------o
 +
|  P o Q  #    X    |        |    Z    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 18.  Relational Composition}~ P \circ Q</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>P\!</math>
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
| &nbsp;
 +
|-
 +
| style="border-right:1px solid black" | <math>Q\!</math>
 +
| &nbsp;
 +
| <math>Y\!</math>
 +
| <math>Z\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>P \circ Q</math>
 +
| <math>X\!</math>
 +
| &nbsp;
 +
| <math>Z\!</math>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 20.  Arrow:  J(L(u, v)) = K(Ju, Jv)
 +
o---------o---------o---------o---------o
 +
|        #    J    |    J    |    J    |
 +
o=========o=========o=========o=========o
 +
|    K    #    X    |    X    |    X    |
 +
o---------o---------o---------o---------o
 +
|    L    #    Y    |    Y    |    Y    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 20.  Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>K\!</math>
 +
| <math>X\!</math>
 +
| <math>X\!</math>
 +
| <math>X\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L\!</math>
 +
| <math>Y\!</math>
 +
| <math>Y\!</math>
 +
| <math>Y\!</math>
 
|}
 
|}
  
Line 140: Line 342:
 
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%"
 
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%"
 
| width="20%" | <math>\operatorname{Sentence}</math>
 
| width="20%" | <math>\operatorname{Sentence}</math>
| width="20%" | <math>\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Parse}}</math>
+
| width="20%" | <math>\xrightarrow[\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}]{\operatorname{Parse}}</math>
 
| width="20%" | <math>\operatorname{Graph}</math>
 
| width="20%" | <math>\operatorname{Graph}</math>
| width="20%" | <math>\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Denotation}}</math>
+
| width="20%" | <math>\xrightarrow[\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}]{\operatorname{Denotation}}</math>
 
| width="20%" | <math>\operatorname{Proposition}</math>
 
| width="20%" | <math>\operatorname{Proposition}</math>
 
|}
 
|}
Line 149: Line 351:
 
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
| width="20%" | <math>s_j\!</math>
 
| width="20%" | <math>s_j\!</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>C_j\!</math>
 
| width="20%" | <math>C_j\!</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>q_j\!</math>
 
| width="20%" | <math>q_j\!</math>
 
|}
 
|}
Line 158: Line 360:
 
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
| width="20%" | <math>\operatorname{Conc}^0</math>
 
| width="20%" | <math>\operatorname{Conc}^0</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Node}^0</math>
 
| width="20%" | <math>\operatorname{Node}^0</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\underline{1}</math>
 
| width="20%" | <math>\underline{1}</math>
 
|-
 
|-
 
| width="20%" | <math>\operatorname{Conc}^k_j s_j</math>
 
| width="20%" | <math>\operatorname{Conc}^k_j s_j</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Node}^k_j C_j</math>
 
| width="20%" | <math>\operatorname{Node}^k_j C_j</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Conj}^k_j q_j</math>
 
| width="20%" | <math>\operatorname{Conj}^k_j q_j</math>
 
|}
 
|}
Line 173: Line 375:
 
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
| width="20%" | <math>\operatorname{Surc}^0</math>
 
| width="20%" | <math>\operatorname{Surc}^0</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Lobe}^0</math>
 
| width="20%" | <math>\operatorname{Lobe}^0</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\underline{0}</math>
 
| width="20%" | <math>\underline{0}</math>
 
|-
 
|-
 
| width="20%" | <math>\operatorname{Surc}^k_j s_j</math>
 
| width="20%" | <math>\operatorname{Surc}^k_j s_j</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Lobe}^k_j C_j</math>
 
| width="20%" | <math>\operatorname{Lobe}^k_j C_j</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Surj}^k_j q_j</math>
 
| width="20%" | <math>\operatorname{Surj}^k_j q_j</math>
 
|}
 
|}

Latest revision as of 11:18, 14 October 2025

Format Samples • Wiki Text

MathBB, MathBF, MathCal

A set of logical features, \(\mathcal{A} = \{ a_1, \ldots, a_n \},\) affords a basis for generating an \(n\)-dimensional universe of discourse, written \(A^\bullet = [ \mathcal{A} ] = [ a_1, \ldots, a_n ].\) It is useful to consider a universe of discourse as a categorical object that incorporates both the set of points \(A = \langle a_1, \ldots, a_n \rangle\) and the set of propositions \(A^\uparrow = \{ f : A \to \mathbb{B} \}\) that are implicit with the ordinary picture of a venn diagram on \(n\) features. Accordingly, the universe of discourse \(A^\bullet\) may be regarded as an ordered pair \((A, A^\uparrow)\) having the type \((\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})),\) and this last type designation may be abbreviated as \(\mathbb{B}^n\ +\!\to \mathbb{B},\) or even more succinctly as \([ \mathbb{B}^n ].\) For convenience, the data type of a finite set on \(n\) elements may be indicated by either one of the equivalent notations, \([n]\) or \(\mathbf{n}.\)

MathFrak

\(\begin{array}{lccccccccccc} \mathfrak{M} & = & \{ & \mathfrak{m}_1 & , & \mathfrak{m}_2 & , & \mathfrak{m}_3 & , & \mathfrak{m}_4 & \} \\ & = & \{ & \text{“ ”} & , & \text{“(”} & , & \text{“,”} & , & \text{“)”} & \} \\ & = & \{ & \mathrm{blank} & , & \mathrm{links} & , & \mathrm{comma} & , & \mathrm{right} & \} \end{array}\)

TextTT

For the initial case \(k = 0,\) the bound connective is an empty closure, an expression taking one of the forms \(\texttt{()}, \texttt{( )}, \texttt{( )}, \ldots\) with any number of spaces between the parentheses, all of which have the same denotation among propositions.

For the generic case \(k > 0,\) the bound connective takes the form \(\texttt{(} s_1 \texttt{,} \ldots \texttt{,} s_k \texttt{)}.\)

Format Samples • Screenshots

MathJax Fail

Format Samples • MathJax Fail.png

MathML View

Format Samples • MathML View.png

Logic of Relatives


Table 3.  Relational Composition
o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o
|    L    #    X    |    Y    |         |
o---------o---------o---------o---------o
|    M    #         |    Y    |    Z    |
o---------o---------o---------o---------o
|  L o M  #    X    |         |    Z    |
o---------o---------o---------o---------o


\(\text{Table 3. Relational Composition}\!\)
  \(\mathit{1}\!\) \(\mathit{1}\!\) \(\mathit{1}\!\)
\(L\!\) \(X\!\) \(Y\!\)  
\(M\!\)   \(Y\!\) \(Z\!\)
\(L \circ M\) \(X\!\)   \(Z\!\)


Table 9.  Composite of Triadic and Dyadic Relations
o---------o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o=========o
|    G    #    T    |    U    |         |    V    |
o---------o---------o---------o---------o---------o
|    L    #         |    U    |    W    |         |
o---------o---------o---------o---------o---------o
|  G o L  #    T    |         |    W    |    V    |
o---------o---------o---------o---------o---------o


\(\text{Table 9. Composite of Triadic and Dyadic Relations}\!\)
  \(\mathit{1}\!\) \(\mathit{1}\!\) \(\mathit{1}\!\) \(\mathit{1}\!\)
\(G\!\) \(T\!\) \(U\!\)   \(V\!\)
\(L\!\)   \(U\!\) \(W\!\)  
\(G \circ L\) \(T\!\)   \(W\!\) \(V\!\)


Table 13.  Another Brand of Composition
o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o
|    G    #    X    |    Y    |    Z    |
o---------o---------o---------o---------o
|    T    #         |    Y    |    Z    |
o---------o---------o---------o---------o
|  G o T  #    X    |         |    Z    |
o---------o---------o---------o---------o


\(\text{Table 13. Another Brand of Composition}\!\)
  \(\mathit{1}\!\) \(\mathit{1}\!\) \(\mathit{1}\!\)
\(G\!\) \(X\!\) \(Y\!\) \(Z\!\)
\(T\!\)   \(Y\!\) \(Z\!\)
\(G \circ T\) \(X\!\)   \(Z\!\)


Table 15.  Conjunction Via Composition
o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o
|    L,   #    X    |    X    |    Y    |
o---------o---------o---------o---------o
|    S    #         |    X    |    Y    |
o---------o---------o---------o---------o
|  L , S  #    X    |         |    Y    |
o---------o---------o---------o---------o


\(\text{Table 15. Conjunction Via Composition}\!\)
  \(\mathit{1}\!\) \(\mathit{1}\!\) \(\mathit{1}\!\)
\(L,\!\) \(X\!\) \(X\!\) \(Y\!\)
\(S\!\)   \(X\!\) \(Y\!\)
\(L,\!S\) \(X\!\)   \(Y\!\)


Table 18.  Relational Composition P o Q
o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o
|    P    #    X    |    Y    |         |
o---------o---------o---------o---------o
|    Q    #         |    Y    |    Z    |
o---------o---------o---------o---------o
|  P o Q  #    X    |         |    Z    |
o---------o---------o---------o---------o


\(\text{Table 18. Relational Composition}~ P \circ Q\)
  \(\mathit{1}\!\) \(\mathit{1}\!\) \(\mathit{1}\!\)
\(P\!\) \(X\!\) \(Y\!\)  
\(Q\!\)   \(Y\!\) \(Z\!\)
\(P \circ Q\) \(X\!\)   \(Z\!\)


Table 20.  Arrow:  J(L(u, v)) = K(Ju, Jv)
o---------o---------o---------o---------o
|         #    J    |    J    |    J    |
o=========o=========o=========o=========o
|    K    #    X    |    X    |    X    |
o---------o---------o---------o---------o
|    L    #    Y    |    Y    |    Y    |
o---------o---------o---------o---------o


\(\text{Table 20. Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)\)
  \(J\!\) \(J\!\) \(J\!\)
\(K\!\) \(X\!\) \(X\!\) \(X\!\)
\(L\!\) \(Y\!\) \(Y\!\) \(Y\!\)


Grammar Stuff


Table 13. Algorithmic Translation Rules
\(\text{Sentence in PARCE}\!\) \(\xrightarrow{\operatorname{Parse}}\) \(\text{Graph in PARC}\!\)
\(\operatorname{Conc}^0\) \(\xrightarrow{\operatorname{Parse}}\) \(\operatorname{Node}^0\)
\(\operatorname{Conc}_{j=1}^k s_j\) \(\xrightarrow{\operatorname{Parse}}\) \(\operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j)\)
\(\operatorname{Surc}^0\) \(\xrightarrow{\operatorname{Parse}}\) \(\operatorname{Lobe}^0\)
\(\operatorname{Surc}_{j=1}^k s_j\) \(\xrightarrow{\operatorname{Parse}}\) \(\operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j)\)


Table 14.1 Semantic Translation : Functional Form
\(\operatorname{Sentence}\) \(\xrightarrow[\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}]{\operatorname{Parse}}\) \(\operatorname{Graph}\) \(\xrightarrow[\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}]{\operatorname{Denotation}}\) \(\operatorname{Proposition}\)
\(s_j\!\) \(\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}\) \(C_j\!\) \(\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}\) \(q_j\!\)
\(\operatorname{Conc}^0\) \(\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}\) \(\operatorname{Node}^0\) \(\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}\) \(\underline{1}\)
\(\operatorname{Conc}^k_j s_j\) \(\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}\) \(\operatorname{Node}^k_j C_j\) \(\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}\) \(\operatorname{Conj}^k_j q_j\)
\(\operatorname{Surc}^0\) \(\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}\) \(\operatorname{Lobe}^0\) \(\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}\) \(\underline{0}\)
\(\operatorname{Surc}^k_j s_j\) \(\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}\) \(\operatorname{Lobe}^k_j C_j\) \(\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}\) \(\operatorname{Surj}^k_j q_j\)


Table 14.2 Semantic Translation : Equational Form
\(\downharpoonleft \operatorname{Sentence} \downharpoonright\) \(\stackrel{\operatorname{Parse}}{=}\) \(\downharpoonleft \operatorname{Graph} \downharpoonright\) \(\stackrel{\operatorname{Denotation}}{=}\) \(\operatorname{Proposition}\)
\(\downharpoonleft s_j \downharpoonright\) \(=\!\) \(\downharpoonleft C_j \downharpoonright\) \(=\!\) \(q_j\!\)
\(\downharpoonleft \operatorname{Conc}^0 \downharpoonright\) \(=\!\) \(\downharpoonleft \operatorname{Node}^0 \downharpoonright\) \(=\!\) \(\underline{1}\)
\(\downharpoonleft \operatorname{Conc}^k_j s_j \downharpoonright\) \(=\!\) \(\downharpoonleft \operatorname{Node}^k_j C_j \downharpoonright\) \(=\!\) \(\operatorname{Conj}^k_j q_j\)
\(\downharpoonleft \operatorname{Surc}^0 \downharpoonright\) \(=\!\) \(\downharpoonleft \operatorname{Lobe}^0 \downharpoonright\) \(=\!\) \(\underline{0}\)
\(\downharpoonleft \operatorname{Surc}^k_j s_j \downharpoonright\) \(=\!\) \(\downharpoonleft \operatorname{Lobe}^k_j C_j \downharpoonright\) \(=\!\) \(\operatorname{Surj}^k_j q_j\)


Table Stuff


Table 15. Boolean Functions on Zero Variables
\(F\!\) \(F\!\) \(F()\!\) \(F\!\)
\(\underline{0}\) \(F_0^{(0)}\!\) \(\underline{0}\) \((~)\)
\(\underline{1}\) \(F_1^{(0)}\!\) \(\underline{1}\) \(((~))\)


Table 16. Boolean Functions on One Variable
\(F\!\) \(F\!\) \(F(x)\!\) \(F\!\)
    \(F(\underline{1})\) \(F(\underline{0})\)  
\(F_0^{(1)}\!\) \(F_{00}^{(1)}\!\) \(\underline{0}\) \(\underline{0}\) \((~)\)
\(F_1^{(1)}\!\) \(F_{01}^{(1)}\!\) \(\underline{0}\) \(\underline{1}\) \((x)\!\)
\(F_2^{(1)}\!\) \(F_{10}^{(1)}\!\) \(\underline{1}\) \(\underline{0}\) \(x\!\)
\(F_3^{(1)}\!\) \(F_{11}^{(1)}\!\) \(\underline{1}\) \(\underline{1}\) \(((~))\)


Table 17. Boolean Functions on Two Variables
\(F\!\) \(F\!\) \(F(x, y)\!\) \(F\!\)
    \(F(\underline{1}, \underline{1})\) \(F(\underline{1}, \underline{0})\) \(F(\underline{0}, \underline{1})\) \(F(\underline{0}, \underline{0})\)  
\(F_{0}^{(2)}\!\) \(F_{0000}^{(2)}\!\) \(\underline{0}\) \(\underline{0}\) \(\underline{0}\) \(\underline{0}\) \((~)\)
\(F_{1}^{(2)}\!\) \(F_{0001}^{(2)}\!\) \(\underline{0}\) \(\underline{0}\) \(\underline{0}\) \(\underline{1}\) \((x)(y)\!\)
\(F_{2}^{(2)}\!\) \(F_{0010}^{(2)}\!\) \(\underline{0}\) \(\underline{0}\) \(\underline{1}\) \(\underline{0}\) \((x) y\!\)
\(F_{3}^{(2)}\!\) \(F_{0011}^{(2)}\!\) \(\underline{0}\) \(\underline{0}\) \(\underline{1}\) \(\underline{1}\) \((x)\!\)
\(F_{4}^{(2)}\!\) \(F_{0100}^{(2)}\!\) \(\underline{0}\) \(\underline{1}\) \(\underline{0}\) \(\underline{0}\) \(x (y)\!\)
\(F_{5}^{(2)}\!\) \(F_{0101}^{(2)}\!\) \(\underline{0}\) \(\underline{1}\) \(\underline{0}\) \(\underline{1}\) \((y)\!\)
\(F_{6}^{(2)}\!\) \(F_{0110}^{(2)}\!\) \(\underline{0}\) \(\underline{1}\) \(\underline{1}\) \(\underline{0}\) \((x, y)\!\)
\(F_{7}^{(2)}\!\) \(F_{0111}^{(2)}\!\) \(\underline{0}\) \(\underline{1}\) \(\underline{1}\) \(\underline{1}\) \((x y)\!\)
\(F_{8}^{(2)}\!\) \(F_{1000}^{(2)}\!\) \(\underline{1}\) \(\underline{0}\) \(\underline{0}\) \(\underline{0}\) \(x y\!\)
\(F_{9}^{(2)}\!\) \(F_{1001}^{(2)}\!\) \(\underline{1}\) \(\underline{0}\) \(\underline{0}\) \(\underline{1}\) \(((x, y))\!\)
\(F_{10}^{(2)}\!\) \(F_{1010}^{(2)}\!\) \(\underline{1}\) \(\underline{0}\) \(\underline{1}\) \(\underline{0}\) \(y\!\)
\(F_{11}^{(2)}\!\) \(F_{1011}^{(2)}\!\) \(\underline{1}\) \(\underline{0}\) \(\underline{1}\) \(\underline{1}\) \((x (y))\!\)
\(F_{12}^{(2)}\!\) \(F_{1100}^{(2)}\!\) \(\underline{1}\) \(\underline{1}\) \(\underline{0}\) \(\underline{0}\) \(x\!\)
\(F_{13}^{(2)}\!\) \(F_{1101}^{(2)}\!\) \(\underline{1}\) \(\underline{1}\) \(\underline{0}\) \(\underline{1}\) \(((x)y)\!\)
\(F_{14}^{(2)}\!\) \(F_{1110}^{(2)}\!\) \(\underline{1}\) \(\underline{1}\) \(\underline{1}\) \(\underline{0}\) \(((x)(y))\!\)
\(F_{15}^{(2)}\!\) \(F_{1111}^{(2)}\!\) \(\underline{1}\) \(\underline{1}\) \(\underline{1}\) \(\underline{1}\) \(((~))\)




fixy
u =
v =
1 1 0 0
1 0 1 0
= u
= v
fjuv
x =
y =
1 1 1 0
1 0 0 1
= f‹u, v›
= g‹u, v›


A
u =
v =
1 1 0 0
1 0 1 0
= u
= v
B
x =
y =
1 1 1 0
1 0 0 1
= f‹u, v›
= g‹u, v›


u =
v =
1 1 0 0
1 0 1 0
= u
= v
x =
y =
1 1 1 0
1 0 0 1
= f‹u, v›
= g‹u, v›


u =
v =
x =
y =
1 1 0 0
1 0 1 0
1 1 1 0
1 0 0 1
= u
= v
= f‹u, v›
= g‹u, v›