Difference between revisions of "User:Jon Awbrey/TEST"
MyWikiBiz, Author Your Legacy — Friday November 08, 2024
Jump to navigationJump to searchJon Awbrey (talk | contribs) (→Wet Paint: lining outside the colors) |
Jon Awbrey (talk | contribs) (→Wet Paint: change <br>oken table entries to LaTeX matrices) |
||
Line 592: | Line 592: | ||
<tr> | <tr> | ||
− | <td><math>\mathrm{E} | + | <td><math>\begin{matrix} |
− | <td><math>\mathrm{Universal} | + | \mathrm{E} |
+ | \\ | ||
+ | \mathrm{Exclusive} | ||
+ | \end{matrix}</math></td> | ||
+ | <td><math>\begin{matrix} | ||
+ | \mathrm{Universal} | ||
+ | \\ | ||
+ | \mathrm{Negative} | ||
+ | \end{matrix}</math></td> | ||
<td><math>\mathrm{All} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | <td><math>\mathrm{All} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}</math></td> | ||
<td> </td> | <td> </td> | ||
Line 600: | Line 608: | ||
<tr> | <tr> | ||
− | <td style="border-bottom:1px solid black"><math>\mathrm{A} | + | <td style="border-bottom:1px solid black"> |
− | <td style="border-bottom:1px solid black"><math>\mathrm{Universal} | + | <math>\begin{matrix} |
+ | \mathrm{A} | ||
+ | \\ | ||
+ | \mathrm{Absolute} | ||
+ | \end{matrix}</math></td> | ||
+ | <td style="border-bottom:1px solid black"> | ||
+ | <math>\begin{matrix} | ||
+ | \mathrm{Universal} | ||
+ | \\ | ||
+ | \mathrm{Affirmative} | ||
+ | \end{matrix}</math></td> | ||
<td style="border-bottom:1px solid black"><math>\mathrm{All} ~ u ~ \mathrm{is} ~ v</math></td> | <td style="border-bottom:1px solid black"><math>\mathrm{All} ~ u ~ \mathrm{is} ~ v</math></td> | ||
<td style="border-bottom:1px solid black"> </td> | <td style="border-bottom:1px solid black"> </td> |
Revision as of 21:02, 23 November 2009
Wet Paint
\(\begin{matrix}u\!:\\v\!:\end{matrix}\) | \(\begin{matrix}1100\\1010\end{matrix}\) | \(f\) | \(\begin{smallmatrix} \texttt{(} \ell_{11} \texttt{)} \\ \mathrm{No} ~ u \\ \mathrm{is} ~ v \end{smallmatrix}\) | \(\begin{smallmatrix} \texttt{(} \ell_{10} \texttt{)} \\ \mathrm{No} ~ u \\ \mathrm{is} ~ \texttt{(} v \texttt{)} \end{smallmatrix}\) | \(\begin{smallmatrix} \texttt{(} \ell_{01} \texttt{)} \\ \mathrm{No} ~ \texttt{(} u \texttt{)} \\ \mathrm{is} ~ v \end{smallmatrix}\) | \(\begin{smallmatrix} \texttt{(} \ell_{00} \texttt{)} \\ \mathrm{No} ~ \texttt{(} u \texttt{)} \\ \mathrm{is} ~ \texttt{(} v \texttt{)} \end{smallmatrix}\) | \(\begin{smallmatrix} \ell_{00} \\ \mathrm{Some} ~ \texttt{(} u \texttt{)} \\ \mathrm{is} ~ \texttt{(} v \texttt{)} \end{smallmatrix}\) | \(\begin{smallmatrix} \ell_{01} \\ \mathrm{Some} ~ \texttt{(} u \texttt{)} \\ \mathrm{is} ~ v \end{smallmatrix}\) | \(\begin{smallmatrix} \ell_{10} \\ \mathrm{Some} ~ u \\ \mathrm{is} ~ \texttt{(} v \texttt{)} \end{smallmatrix}\) | \(\begin{smallmatrix} \ell_{11} \\ \mathrm{Some} ~ u \\ \mathrm{is} ~ v \end{smallmatrix}\) |
\(f_{0}\) | \(0000\) | \(\texttt{(~)}\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
\(f_{1}\) | \(0001\) | \(\texttt{(} u \texttt{)(} v \texttt{)}\) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
\(f_{2}\) | \(0010\) | \(\texttt{(} u\texttt{)} ~ v\) | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
\(f_{3}\) | \(0011\) | \(\texttt{(} u \texttt{)}\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
\(f_{4}\) | \(0100\) | \(u ~ \texttt{(} v \texttt{)}\) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
\(f_{5}\) | \(0101\) | \(\texttt{(} v \texttt{)}\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
\(f_{6}\) | \(0110\) | \(\texttt{(} u \texttt{,} v \texttt{)}\) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
\(f_{7}\) | \(0111\) | \(\texttt{(} u ~ v \texttt{)}\) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
\(f_{8}\) | \(1000\) | \(u ~ v\) | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
\(f_{9}\) | \(1001\) | \(\texttt{((} u \texttt{,} v \texttt{))}\) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
\(f_{10}\) | \(1010\) | \(v\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_{11}\) | \(1011\) | \(\texttt{(} u ~ \texttt{(} v \texttt{))}\) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
\(f_{12}\) | \(1100\) | \(u\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_{13}\) | \(1101\) | \(\texttt{((} u \texttt{)} ~ v \texttt{)}\) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
\(f_{14}\) | \(1110\) | \(\texttt{((} u \texttt{)(} v \texttt{))}\) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
\(f_{15}\) | \(1111\) | \(\texttt{((~))}\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
\(\begin{matrix}u\!:\\v\!:\end{matrix}\) | \(\begin{matrix}1100\\1010\end{matrix}\) | \(f\) | \(\begin{smallmatrix} \texttt{(} \ell_{11} \texttt{)} \\ \mathrm{No} ~ u \\ \mathrm{is} ~ v \end{smallmatrix}\) | \(\begin{smallmatrix} \texttt{(} \ell_{10} \texttt{)} \\ \mathrm{No} ~ u \\ \mathrm{is} ~ \texttt{(} v \texttt{)} \end{smallmatrix}\) | \(\begin{smallmatrix} \texttt{(} \ell_{01} \texttt{)} \\ \mathrm{No} ~ \texttt{(} u \texttt{)} \\ \mathrm{is} ~ v \end{smallmatrix}\) | \(\begin{smallmatrix} \texttt{(} \ell_{00} \texttt{)} \\ \mathrm{No} ~ \texttt{(} u \texttt{)} \\ \mathrm{is} ~ \texttt{(} v \texttt{)} \end{smallmatrix}\) | \(\begin{smallmatrix} \ell_{00} \\ \mathrm{Some} ~ \texttt{(} u \texttt{)} \\ \mathrm{is} ~ \texttt{(} v \texttt{)} \end{smallmatrix}\) | \(\begin{smallmatrix} \ell_{01} \\ \mathrm{Some} ~ \texttt{(} u \texttt{)} \\ \mathrm{is} ~ v \end{smallmatrix}\) | \(\begin{smallmatrix} \ell_{10} \\ \mathrm{Some} ~ u \\ \mathrm{is} ~ \texttt{(} v \texttt{)} \end{smallmatrix}\) | \(\begin{smallmatrix} \ell_{11} \\ \mathrm{Some} ~ u \\ \mathrm{is} ~ v \end{smallmatrix}\) |
\(f_{0}\) | \(0000\) | \(\texttt{(~)}\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
\(f_{1}\) | \(0001\) | \(\texttt{(} u \texttt{)(} v \texttt{)}\) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
\(f_{2}\) | \(0010\) | \(\texttt{(} u\texttt{)} ~ v\) | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
\(f_{4}\) | \(0100\) | \(u ~ \texttt{(} v \texttt{)}\) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
\(f_{8}\) | \(1000\) | \(u ~ v\) | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 |
\(f_{3}\) | \(0011\) | \(\texttt{(} u \texttt{)}\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
\(f_{12}\) | \(1100\) | \(u\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
\(f_{6}\) | \(0110\) | \(\texttt{(} u \texttt{,} v \texttt{)}\) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
\(f_{9}\) | \(1001\) | \(\texttt{((} u \texttt{,} v \texttt{))}\) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
\(f_{5}\) | \(0101\) | \(\texttt{(} v \texttt{)}\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
\(f_{10}\) | \(1010\) | \(v\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
\(f_{7}\) | \(0111\) | \(\texttt{(} u ~ v \texttt{)}\) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
\(f_{11}\) | \(1011\) | \(\texttt{(} u ~ \texttt{(} v \texttt{))}\) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
\(f_{13}\) | \(1101\) | \(\texttt{((} u \texttt{)} ~ v \texttt{)}\) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
\(f_{14}\) | \(1110\) | \(\texttt{((} u \texttt{)(} v \texttt{))}\) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 |
\(f_{15}\) | \(1111\) | \(\texttt{((~))}\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
\(\mathrm{Mnemonic}\) | \(\mathrm{Category}\) | \(\mathrm{Classical~Form}\) | \(\mathrm{Alternate~Form}\) | \(\mathrm{Symmetric~Form}\) | \(\mathrm{Operator}\) |
\(\begin{matrix} \mathrm{E} \\ \mathrm{Exclusive} \end{matrix}\) | \(\begin{matrix} \mathrm{Universal} \\ \mathrm{Negative} \end{matrix}\) | \(\mathrm{All} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\) | \(\mathrm{No} ~ u ~ \mathrm{is} ~ v\) | \(\texttt{(} \ell_{11} \texttt{)}\) | |
\(\begin{matrix} \mathrm{A} \\ \mathrm{Absolute} \end{matrix}\) | \(\begin{matrix} \mathrm{Universal} \\ \mathrm{Affirmative} \end{matrix}\) | \(\mathrm{All} ~ u ~ \mathrm{is} ~ v\) | \(\mathrm{No} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\) | \(\texttt{(} \ell_{10} \texttt{)}\) | |
\(\mathrm{All} ~ v ~ \mathrm{is} ~ u\) | \(\mathrm{No} ~ v ~ \mathrm{is} ~ \texttt{(} u \texttt{)}\) | \(\mathrm{No} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v\) | \(\texttt{(} \ell_{01} \texttt{)}\) | ||
\(\mathrm{All} ~ \texttt{(} v \texttt{)} ~ \mathrm{is} ~ u\) | \(\mathrm{No} ~ \texttt{(} v \texttt{)} ~ \mathrm{is} ~ \texttt{(} u \texttt{)}\) | \(\mathrm{No} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\) | \(\texttt{(} \ell_{00} \texttt{)}\) | ||
\(\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\) | \(\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\) | \(\ell_{00}\) | |||
\(\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v\) | \(\mathrm{Some} ~ \texttt{(} u \texttt{)} ~ \mathrm{is} ~ v\) | \(\ell_{01}\) | |||
\(\mathrm{O}\) \(\mathrm{Obtrusive}\) |
\(\mathrm{Particular}\) \(\mathrm{Negative}\) |
\(\mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\) | \(\mathrm{Some} ~ u ~ \mathrm{is} ~ \texttt{(} v \texttt{)}\) | \(\ell_{10}\) | |
\(\mathrm{I}\) \(\mathrm{Indefinite}\) |
\(\mathrm{Particular}\) \(\mathrm{Affirmative}\) |
\(\mathrm{Some} ~ u ~ \mathrm{is} ~ v\) | \(\mathrm{Some} ~ u ~ \mathrm{is} ~ v\) | \(\ell_{11}\) |