Difference between revisions of "Directory:Jon Awbrey/Papers/Riffs and Rotes"
Jon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) (update) |
||
(63 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:Riffs and Rotes}} | {{DISPLAYTITLE:Riffs and Rotes}} | ||
− | __TOC__ | + | <div class="nonumtoc">__TOC__</div> |
− | == | + | ==Idea== |
+ | |||
+ | Let <math>\text{p}_i\!</math> be the <math>i^\text{th}\!</math> prime, where the positive integer <math>i\!</math> is called the ''index'' of the prime <math>\text{p}_i\!</math> and the indices are taken in such a way that <math>\text{p}_1 = 2.\!</math> Thus the sequence of primes begins as follows: | ||
+ | |||
+ | {| align="center" cellpadding="6" width="90%" | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \text{p}_1 = 2, & | ||
+ | \text{p}_2 = 3, & | ||
+ | \text{p}_3 = 5, & | ||
+ | \text{p}_4 = 7, & | ||
+ | \text{p}_5 = 11, & | ||
+ | \text{p}_6 = 13, & | ||
+ | \text{p}_7 = 17, & | ||
+ | \text{p}_8 = 19, & | ||
+ | \ldots | ||
+ | \end{matrix}</math> | ||
+ | |} | ||
+ | |||
+ | The prime factorization of a positive integer <math>n\!</math> can be written in the following form: | ||
+ | |||
+ | {| align="center" cellpadding="6" width="90%" | ||
+ | | <math>n ~=~ \prod_{k = 1}^{\ell} \text{p}_{i(k)}^{j(k)},\!</math> | ||
+ | |} | ||
+ | |||
+ | where <math>\text{p}_{i(k)}^{j(k)}\!</math> is the <math>k^\text{th}\!</math> prime power in the factorization and <math>\ell\!</math> is the number of distinct prime factors dividing <math>n.\!</math> The factorization of <math>1\!</math> is defined as <math>1\!</math> in accord with the convention that an empty product is equal to <math>1.\!</math> | ||
+ | |||
+ | Let <math>I(n)\!</math> be the set of indices of primes that divide <math>n\!</math> and let <math>j(i, n)\!</math> be the number of times that <math>\text{p}_i\!</math> divides <math>n.\!</math> Then the prime factorization of <math>n\!</math> can be written in the following alternative form: | ||
+ | |||
+ | {| align="center" cellpadding="6" width="90%" | ||
+ | | <math>n ~=~ \prod_{i \in I(n)} \text{p}_{i}^{j(i, n)}.\!</math> | ||
+ | |} | ||
+ | |||
+ | For example: | ||
− | {| align="center" | + | {| align="center" cellpadding="6" width="90%" |
− | | | + | | |
− | | | + | <math>\begin{matrix} |
− | < | + | 123456789 |
− | < | + | & = & 3^2 \cdot 3607 \cdot 3803 |
− | + | & = & \text{p}_2^2 \text{p}_{504}^1 \text{p}_{529}^1. | |
− | + | \end{matrix}</math> | |
− | + | |} | |
− | + | ||
− | + | Each index <math>i\!</math> and exponent <math>j\!</math> appearing in the prime factorization of a positive integer <math>n\!</math> is itself a positive integer, and thus has a prime factorization of its own. | |
− | | | + | |
− | <p | + | Continuing with the same example, the index <math>504\!</math> has the factorization <math>2^3 \cdot 3^2 \cdot 7 = \text{p}_1^3 \text{p}_2^2 \text{p}_4^1\!</math> and the index <math>529\!</math> has the factorization <math>{23}^2 = \text{p}_9^2.\!</math> Taking this information together with previously known factorizations allows the following replacements to be made in the expression above: |
− | + | ||
− | + | {| align="center" cellpadding="6" width="90%" | |
− | | | + | | |
− | <p | + | <math>\begin{array}{rcl} |
− | + | 2 & \mapsto & \text{p}_1^1 | |
− | + | \\[6pt] | |
− | | | + | 504 & \mapsto & \text{p}_1^3 \text{p}_2^2 \text{p}_4^1 |
− | <p | + | \\[6pt] |
− | + | 529 & \mapsto & \text{p}_9^2 | |
− | < | + | \end{array}</math> |
− | + | |} | |
− | | | + | |
− | < | + | This leads to the following development: |
− | + | ||
− | + | {| align="center" cellpadding="6" width="90%" | |
+ | | | ||
+ | <math>\begin{array}{lll} | ||
+ | 123456789 | ||
+ | & = & \text{p}_2^2 \text{p}_{504}^1 \text{p}_{529}^1 | ||
+ | \\[12pt] | ||
+ | & = & \text{p}_{\text{p}_1^1}^{\text{p}_1^1} \text{p}_{\text{p}_1^3 \text{p}_2^2 \text{p}_4^1}^1 \text{p}_{\text{p}_9^2}^1 | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | Continuing to replace every index and exponent with its factorization produces the following development: | ||
+ | |||
+ | {| align="center" cellpadding="6" width="90%" | ||
+ | | | ||
+ | <math>\begin{array}{lll} | ||
+ | 123456789 | ||
+ | & = & \text{p}_2^2 \text{p}_{504}^1 \text{p}_{529}^1 | ||
+ | \\[18pt] | ||
+ | & = & \text{p}_{\text{p}_1^1}^{\text{p}_1^1} \text{p}_{\text{p}_1^3 \text{p}_2^2 \text{p}_4^1}^1 \text{p}_{\text{p}_9^2}^1 | ||
+ | \\[18pt] | ||
+ | & = & \text{p}_{\text{p}_1^1}^{\text{p}_1^1} \text{p}_{\text{p}_1^{\text{p}_2^1} \text{p}_{\text{p}_1^1}^{\text{p}_1^1} \text{p}_{\text{p}_1^2}^1}^1 \text{p}_{\text{p}_{\text{p}_2^2}^{\text{p}_1^1}}^1 | ||
+ | \\[18pt] | ||
+ | & = & \text{p}_{\text{p}_1^1}^{\text{p}_1^1} \text{p}_{\text{p}_1^{\text{p}_{\text{p}_1^1}^1} \text{p}_{\text{p}_1^1}^{\text{p}_1^1} \text{p}_{\text{p}_1^{\text{p}_1^1}}^1}^1 \text{p}_{\text{p}_{\text{p}_{\text{p}_1^1}^{\text{p}_1^1}}^{\text{p}_1^1}}^1 | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | The <math>1\!</math>'s that appear as indices and exponents are formally redundant, conveying no information apart from the places they occupy in the resulting syntactic structure. Leaving them tacit produces the following expression: | ||
+ | |||
+ | {| align="center" cellpadding="6" width="90%" | ||
+ | | | ||
+ | <math>\begin{array}{lll} | ||
+ | 123456789 | ||
+ | & = & \text{p}_{\text{p}}^{\text{p}} \text{p}_{\text{p}^{\text{p}_{\text{p}}} \text{p}_{\text{p}}^{\text{p}} \text{p}_{\text{p}^{\text{p}}}} \text{p}_{\text{p}_{\text{p}_{\text{p}}^{\text{p}}}^{\text{p}}} | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | The pattern of indices and exponents illustrated here is called a ''doubly recursive factorization'', or ''DRF''. Applying the same procedure to any positive integer <math>n\!</math> produces an expression called the DRF of <math>n.\!</math> If <math>\mathbb{M}</math> is the set of positive integers, <math>\mathcal{L}</math> is the set of DRF expressions, and the mapping defined by the factorization process is denoted <math>\operatorname{drf} : \mathbb{M} \to \mathcal{L},</math> then the doubly recursive factorization of <math>n\!</math> is denoted <math>\operatorname{drf}(n).\!</math> | ||
+ | |||
+ | The forms of DRF expressions can be mapped into either one of two classes of graph-theoretical structures, called ''riffs'' and ''rotes'', respectively. | ||
+ | |||
+ | {| align=center cellpadding="6" width="90%" | ||
+ | |- | ||
+ | | <math>\operatorname{riff}(123456789)</math> is the following digraph: | ||
+ | |- | ||
+ | | align=center | [[Image:Riff 123456789 Big.jpg|220px]] | ||
+ | |- | ||
+ | | <math>\operatorname{rote}(123456789)</math> is the following graph: | ||
+ | |- | ||
+ | | align=center | [[Image:Rote 123456789 Big.jpg|345px]] | ||
+ | |} | ||
+ | |||
+ | ==Riffs in Numerical Order== | ||
+ | |||
+ | {| align="center" border="1" cellpadding="12" | ||
+ | |+ style="height:25px" | <math>\text{Riffs in Numerical Order}\!</math> | ||
| valign="bottom" | | | valign="bottom" | | ||
− | <p>[[Image:Riff 7 Big.jpg|65px]]</p><br> | + | <p> </p><br> |
− | <p><math>\text{p}_{\text{p}^\text{p}}\!</math></p><br> | + | <p><math>1\!</math></p><br> |
+ | <p><math>\begin{array}{l} \varnothing \\ 1 \end{array}</math></p> | ||
+ | | valign="bottom" | | ||
+ | <p>[[Image:Riff 2 Big.jpg|20px]]</p><br> | ||
+ | <p><math>\text{p}\!</math></p><br> | ||
+ | <p><math>\begin{array}{l} 1\!:\!1 \\ 2 \end{array}</math></p> | ||
+ | | valign="bottom" | | ||
+ | <p>[[Image:Riff 3 Big.jpg|40px]]</p><br> | ||
+ | <p><math>\text{p}_\text{p}\!</math></p><br> | ||
+ | <p><math>\begin{array}{l} 2\!:\!1 \\ 3 \end{array}</math></p> | ||
+ | | valign="bottom" | | ||
+ | <p>[[Image:Riff 4 Big.jpg|40px]]</p><br> | ||
+ | <p><math>\text{p}^\text{p}\!</math></p><br> | ||
+ | <p><math>\begin{array}{l} 1\!:\!2 \\ 4 \end{array}</math></p> | ||
+ | | valign="bottom" | | ||
+ | <p>[[Image:Riff 5 Big.jpg|65px]]</p><br> | ||
+ | <p><math>\text{p}_{\text{p}_\text{p}}\!</math></p><br> | ||
+ | <p><math>\begin{array}{l} 3\!:\!1 \\ 5 \end{array}</math></p> | ||
+ | |- | ||
+ | | valign="bottom" | | ||
+ | <p>[[Image:Riff 6 Big.jpg|65px]]</p><br> | ||
+ | <p><math>\text{p} \text{p}_\text{p}\!</math></p><br> | ||
+ | <p><math>\begin{array}{l} 1\!:\!1 ~~ 2\!:\!1 \\ 6 \end{array}</math></p> | ||
+ | | valign="bottom" | | ||
+ | <p>[[Image:Riff 7 Big.jpg|65px]]</p><br> | ||
+ | <p><math>\text{p}_{\text{p}^\text{p}}\!</math></p><br> | ||
<p><math>\begin{array}{l} 4\!:\!1 \\ 7 \end{array}</math></p> | <p><math>\begin{array}{l} 4\!:\!1 \\ 7 \end{array}</math></p> | ||
| valign="bottom" | | | valign="bottom" | | ||
Line 262: | Line 374: | ||
{| align="center" border="1" cellpadding="6" | {| align="center" border="1" cellpadding="6" | ||
+ | |+ style="height:25px" | <math>\text{Rotes in Numerical Order}\!</math> | ||
| valign="bottom" | | | valign="bottom" | | ||
<p>[[Image:Rote 1 Big.jpg|20px]]</p><br> | <p>[[Image:Rote 1 Big.jpg|20px]]</p><br> | ||
Line 515: | Line 628: | ||
|} | |} | ||
− | == | + | ==Prime Animations== |
+ | |||
+ | ===Riffs 1 to 60=== | ||
− | {| align="center" border="1" width=" | + | {| align="center" |
− | |+ style="height: | + | | [[Image:Animation Riff 60 x 0.16.gif]] |
+ | |} | ||
+ | |||
+ | ===Rotes 1 to 60=== | ||
+ | |||
+ | {| align="center" | ||
+ | | [[Image:Animation Rote 60 x 0.16.gif]] | ||
+ | |} | ||
+ | |||
+ | ==Selected Sequences== | ||
+ | |||
+ | ===A061396=== | ||
+ | |||
+ | * '''Number of "rooted index-functional forests" (Riffs) on n nodes.''' | ||
+ | |||
+ | * '''Number of "rooted odd trees with only exponent symmetries" (Rotes) on 2n+1 nodes.''' | ||
+ | |||
+ | * [http://oeis.org/A061396 OEIS Entry for A061396]. | ||
+ | |||
+ | {| align="center" border="1" width="96%" | ||
+ | |+ style="height:24px" | <math>\text{Prime Factorizations, Riffs, Rotes, and Traversals}\!</math> | ||
|- style="height:50px; background:#f0f0ff" | |- style="height:50px; background:#f0f0ff" | ||
| | | | ||
{| cellpadding="12" style="background:#f0f0ff; text-align:center; width:100%" | {| cellpadding="12" style="background:#f0f0ff; text-align:center; width:100%" | ||
| width="10%" | <math>\text{Integer}\!</math> | | width="10%" | <math>\text{Integer}\!</math> | ||
− | | width=" | + | | width="19%" | <math>\text{Factorization}\!</math> |
− | | width=" | + | | width="14%" | <math>\text{Notation}\!</math> |
− | | width=" | + | | width="19%" | <math>\text{Riff Digraph}\!</math> |
− | | width=" | + | | width="19%" | <math>\text{Rote Graph}\!</math> |
+ | | width="19%" | <math>\text{Traversal}\!</math> | ||
|} | |} | ||
|- | |- | ||
Line 532: | Line 668: | ||
{| cellpadding="12" style="text-align:center; width:100%" | {| cellpadding="12" style="text-align:center; width:100%" | ||
| width="10%" | <math>1\!</math> | | width="10%" | <math>1\!</math> | ||
− | | width=" | + | | width="19%" | <math>1\!</math> |
− | | width=" | + | | width="14%" | |
− | | width=" | + | | width="19%" | |
− | | width=" | + | | width="19%" | [[Image:Rote 1 Big.jpg|20px]] |
+ | | width="19%" | | ||
|} | |} | ||
|- | |- | ||
Line 541: | Line 678: | ||
{| cellpadding="12" style="text-align:center; width:100%" | {| cellpadding="12" style="text-align:center; width:100%" | ||
| width="10%" | <math>2\!</math> | | width="10%" | <math>2\!</math> | ||
− | | width=" | + | | width="19%" | <math>\text{p}_1^1\!</math> |
− | | width=" | + | | width="14%" | <math>\text{p}\!</math> |
− | | width=" | + | | width="19%" | [[Image:Riff 2 Big.jpg|20px]] |
− | | width=" | + | | width="19%" | [[Image:Rote 2 Big.jpg|40px]] |
+ | | width="19%" | <math>((~))</math> | ||
|} | |} | ||
|- | |- | ||
Line 550: | Line 688: | ||
{| cellpadding="12" style="text-align:center; width:100%" | {| cellpadding="12" style="text-align:center; width:100%" | ||
| width="10%" | <math>3\!</math> | | width="10%" | <math>3\!</math> | ||
− | | width=" | + | | width="19%" | |
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
\text{p}_2^1 & = & \text{p}_{\text{p}_1^1}^1 | \text{p}_2^1 & = & \text{p}_{\text{p}_1^1}^1 | ||
\end{array}</math> | \end{array}</math> | ||
− | | width=" | + | | width="14%" | <math>\text{p}_\text{p}\!</math> |
− | | width=" | + | | width="19%" | [[Image:Riff 3 Big.jpg|40px]] |
− | | width=" | + | | width="19%" | [[Image:Rote 3 Big.jpg|40px]] |
+ | | width="19%" | <math>(((~))(~))</math> | ||
|- | |- | ||
| <math>4\!</math> | | <math>4\!</math> | ||
Line 566: | Line 705: | ||
| [[Image:Riff 4 Big.jpg|40px]] | | [[Image:Riff 4 Big.jpg|40px]] | ||
| [[Image:Rote 4 Big.jpg|65px]] | | [[Image:Rote 4 Big.jpg|65px]] | ||
+ | | <math>((((~))))</math> | ||
|} | |} | ||
|- | |- | ||
Line 571: | Line 711: | ||
{| cellpadding="12" style="text-align:center; width:100%" | {| cellpadding="12" style="text-align:center; width:100%" | ||
| width="10%" | <math>5\!</math> | | width="10%" | <math>5\!</math> | ||
− | | width=" | + | | width="19%" | |
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
\text{p}_3^1 | \text{p}_3^1 | ||
& = & \text{p}_{\text{p}_2^1}^1 | & = & \text{p}_{\text{p}_2^1}^1 | ||
− | \\[ | + | \\[10pt] |
& = & \text{p}_{\text{p}_{\text{p}_1^1}^1}^1 | & = & \text{p}_{\text{p}_{\text{p}_1^1}^1}^1 | ||
\end{array}</math> | \end{array}</math> | ||
− | | width=" | + | | width="14%" | <math>\text{p}_{\text{p}_{\text{p}}}\!</math> |
− | | width=" | + | | width="19%" | [[Image:Riff 5 Big.jpg|65px]] |
− | | width=" | + | | width="19%" | [[Image:Rote 5 Big.jpg|40px]] |
+ | | width="19%" | <math>((((~))(~))(~))</math> | ||
|- | |- | ||
| <math>6\!</math> | | <math>6\!</math> | ||
Line 591: | Line 732: | ||
| [[Image:Riff 6 Big.jpg|65px]] | | [[Image:Riff 6 Big.jpg|65px]] | ||
| [[Image:Rote 6 Big.jpg|80px]] | | [[Image:Rote 6 Big.jpg|80px]] | ||
+ | | <math>((~))(((~))(~))</math> | ||
|- | |- | ||
| <math>7\!</math> | | <math>7\!</math> | ||
Line 597: | Line 739: | ||
\text{p}_4^1 | \text{p}_4^1 | ||
& = & \text{p}_{\text{p}_1^2}^1 | & = & \text{p}_{\text{p}_1^2}^1 | ||
− | \\[ | + | \\[10pt] |
& = & \text{p}_{\text{p}_1^{\text{p}_1^1}}^1 | & = & \text{p}_{\text{p}_1^{\text{p}_1^1}}^1 | ||
\end{array}</math> | \end{array}</math> | ||
Line 603: | Line 745: | ||
| [[Image:Riff 7 Big.jpg|65px]] | | [[Image:Riff 7 Big.jpg|65px]] | ||
| [[Image:Rote 7 Big.jpg|65px]] | | [[Image:Rote 7 Big.jpg|65px]] | ||
+ | | <math>(((((~))))(~))</math> | ||
|- | |- | ||
| <math>8\!</math> | | <math>8\!</math> | ||
Line 609: | Line 752: | ||
\text{p}_1^3 | \text{p}_1^3 | ||
& = & \text{p}_1^{\text{p}_2^1} | & = & \text{p}_1^{\text{p}_2^1} | ||
− | \\[ | + | \\[10pt] |
& = & \text{p}_1^{\text{p}_{\text{p}_1^1}^1} | & = & \text{p}_1^{\text{p}_{\text{p}_1^1}^1} | ||
\end{array}</math> | \end{array}</math> | ||
Line 615: | Line 758: | ||
| [[Image:Riff 8 Big.jpg|65px]] | | [[Image:Riff 8 Big.jpg|65px]] | ||
| [[Image:Rote 8 Big.jpg|65px]] | | [[Image:Rote 8 Big.jpg|65px]] | ||
+ | | <math>(((((~))(~))))</math> | ||
|- | |- | ||
| <math>9\!</math> | | <math>9\!</math> | ||
Line 625: | Line 769: | ||
| [[Image:Riff 9 Big.jpg|40px]] | | [[Image:Riff 9 Big.jpg|40px]] | ||
| [[Image:Rote 9 Big.jpg|80px]] | | [[Image:Rote 9 Big.jpg|80px]] | ||
+ | | <math>(((~))(((~))))</math> | ||
|- | |- | ||
| <math>16\!</math> | | <math>16\!</math> | ||
Line 631: | Line 776: | ||
\text{p}_1^4 | \text{p}_1^4 | ||
& = & \text{p}_1^{\text{p}_1^2} | & = & \text{p}_1^{\text{p}_1^2} | ||
− | \\[ | + | \\[10pt] |
& = & \text{p}_1^{\text{p}_1^{\text{p}_1^1}} | & = & \text{p}_1^{\text{p}_1^{\text{p}_1^1}} | ||
\end{array}</math> | \end{array}</math> | ||
Line 637: | Line 782: | ||
| [[Image:Riff 16 Big.jpg|65px]] | | [[Image:Riff 16 Big.jpg|65px]] | ||
| [[Image:Rote 16 Big.jpg|90px]] | | [[Image:Rote 16 Big.jpg|90px]] | ||
+ | | <math>((((((~))))))</math> | ||
+ | |} | ||
|} | |} | ||
− | + | ||
− | + | ===A062504=== | |
− | + | ||
− | + | * '''Triangle in which k-th row lists natural number values for the collection of riffs with k nodes.''' | |
− | + | ||
− | + | * [http://oeis.org/A062504 OEIS Entry for A062504]. | |
− | + | ||
− | + | {| align="center" | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
| | | | ||
− | <math>\begin{array}{ | + | <math>\begin{array}{l|l|r} |
− | \ | + | k |
− | + | & P_k | |
− | \\ | + | = \{ n : \operatorname{riff}(n) ~\text{has}~ k ~\text{nodes} \} |
− | + | = \{ n : \operatorname{rote}(n) ~\text{has}~ 2k + 1 ~\text{nodes} \} | |
− | \\ | + | & |P_k| |
− | + | \\[10pt] | |
+ | 0 & \{ 1 \} & 1 | ||
+ | \\ | ||
+ | 1 & \{ 2 \} & 1 | ||
+ | \\ | ||
+ | 2 & \{ 3, 4 \} & 2 | ||
+ | \\ | ||
+ | 3 & \{ 5, 6, 7, 8, 9, 16 \} & 6 | ||
+ | \\ | ||
+ | 4 & \{ 10, 11, 12, 13, 14, 17, 18, 19, 23, 25, 27, 32, 49, 53, 64, 81, 128, 256, 512, 65536 \} & 20 | ||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{ | + | |} |
− | | | + | |
− | + | {| align="center" border="1" width="90%" | |
− | + | |+ style="height:25px" | <math>\text{Prime Factorizations, Riffs, and Rotes}\!</math> | |
− | + | |- style="height:50px; background:#f0f0ff" | |
| | | | ||
− | <math> | + | {| cellpadding="12" style="background:#f0f0ff; text-align:center; width:100%" |
− | \text{ | + | | width="10%" | <math>\text{Integer}\!</math> |
− | + | | width="25%" | <math>\text{Factorization}\!</math> | |
− | + | | width="15%" | <math>\text{Notation}\!</math> | |
− | | <math>\text{ | + | | width="25%" | <math>\text{Riff Digraph}\!</math> |
− | | | + | | width="25%" | <math>\text{Rote Graph}\!</math> |
− | + | |} | |
|- | |- | ||
− | |||
| | | | ||
− | + | {| cellpadding="12" style="text-align:center; width:100%" | |
− | + | | width="10%" | <math>1\!</math> | |
− | + | | width="25%" | <math>1\!</math> | |
− | + | | width="15%" | | |
− | + | | width="25%" | | |
− | + | | width="25%" | [[Image:Rote 1 Big.jpg|20px]] | |
− | | <math> | + | |} |
− | | | ||
− | | [[Image:Rote | ||
|- | |- | ||
− | |||
| | | | ||
− | <math>\ | + | {| cellpadding="12" style="text-align:center; width:100%" |
− | \text{p}_1^1 \ | + | | width="10%" | <math>2\!</math> |
− | + | | width="25%" | <math>\text{p}_1^1\!</math> | |
− | + | | width="15%" | <math>\text{p}\!</math> | |
− | & = & | + | | width="25%" | [[Image:Riff 2 Big.jpg|20px]] |
+ | | width="25%" | [[Image:Rote 2 Big.jpg|40px]] | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| cellpadding="12" style="text-align:center; width:100%" | ||
+ | | width="10%" | <math>3\!</math> | ||
+ | | width="25%" | | ||
+ | <math>\begin{array}{lll} | ||
+ | \text{p}_2^1 & = & \text{p}_{\text{p}_1^1}^1 | ||
\end{array}</math> | \end{array}</math> | ||
− | | <math> | + | | width="15%" | <math>\text{p}_\text{p}\!</math> |
− | | [[Image:Riff | + | | width="25%" | [[Image:Riff 3 Big.jpg|40px]] |
− | | [[Image:Rote | + | | width="25%" | [[Image:Rote 3 Big.jpg|40px]] |
|- | |- | ||
− | | <math> | + | | <math>4\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | + | \text{p}_1^2 & = & \text{p}_1^{\text{p}_1^1} | |
− | |||
− | |||
− | |||
− | |||
− | & = & | ||
\end{array}</math> | \end{array}</math> | ||
− | | <math> | + | | <math>\text{p}^\text{p}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 4 Big.jpg|40px]] |
− | | [[Image:Rote | + | | [[Image:Rote 4 Big.jpg|65px]] |
+ | |} | ||
|- | |- | ||
− | |||
| | | | ||
+ | {| cellpadding="12" style="text-align:center; width:100%" | ||
+ | | width="10%" | <math>5\!</math> | ||
+ | | width="25%" | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p} | + | \text{p}_3^1 |
− | & = & \text{p} | + | & = & \text{p}_{\text{p}_2^1}^1 |
+ | \\[12pt] | ||
+ | & = & \text{p}_{\text{p}_{\text{p}_1^1}^1}^1 | ||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p} \text{p}_{\text{p} | + | | width="15%" | <math>\text{p}_{\text{p}_{\text{p}}}\!</math> |
− | | [[Image:Riff | + | | width="25%" | [[Image:Riff 5 Big.jpg|65px]] |
− | | [[Image:Rote | + | | width="25%" | [[Image:Rote 5 Big.jpg|40px]] |
|- | |- | ||
− | | <math> | + | | <math>6\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | + | \text{p}_1^1 \text{p}_2^1 | |
− | + | & = & \text{p}_1^1 \text{p}_{\text{p}_1^1}^1 | |
− | |||
− | |||
− | |||
− | & = & | ||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p} | + | | <math>\text{p} \text{p}_{\text{p}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 6 Big.jpg|65px]] |
− | | [[Image:Rote | + | | [[Image:Rote 6 Big.jpg|80px]] |
|- | |- | ||
− | | <math> | + | | <math>7\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p} | + | \text{p}_4^1 |
− | & = & \text{p}_{\text{p} | + | & = & \text{p}_{\text{p}_1^2}^1 |
\\[12pt] | \\[12pt] | ||
− | & = & | + | & = & \text{p}_{\text{p}_1^{\text{p}_1^1}}^1 |
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p}_{\text{p | + | | <math>\text{p}_{\text{p}^{\text{p}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 7 Big.jpg|65px]] |
− | | [[Image:Rote | + | | [[Image:Rote 7 Big.jpg|65px]] |
|- | |- | ||
− | | <math> | + | | <math>8\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p} | + | \text{p}_1^3 |
− | & = & \text{p} | + | & = & \text{p}_1^{\text{p}_2^1} |
\\[12pt] | \\[12pt] | ||
− | & = & \text{p} | + | & = & \text{p}_1^{\text{p}_{\text{p}_1^1}^1} |
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p} | + | | <math>\text{p}^{\text{p}_{\text{p}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 8 Big.jpg|65px]] |
− | | [[Image:Rote | + | | [[Image:Rote 8 Big.jpg|65px]] |
|- | |- | ||
− | | <math> | + | | <math>9\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p}_2^ | + | \text{p}_2^2 |
− | & = & \text{p}_{\text{p}_1^1}^ | + | & = & \text{p}_{\text{p}_1^1}^{\text{p}_1^1} |
− | |||
− | |||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p}_ | + | | <math>\text{p}_\text{p}^\text{p}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 9 Big.jpg|40px]] |
− | | [[Image:Rote | + | | [[Image:Rote 9 Big.jpg|80px]] |
|- | |- | ||
− | | <math> | + | | <math>16\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p}_1^ | + | \text{p}_1^4 |
− | & = & \text{p}_1^{\text{p} | + | & = & \text{p}_1^{\text{p}_1^2} |
\\[12pt] | \\[12pt] | ||
− | & = & \text{p}_1^{ | + | & = & \text{p}_1^{\text{p}_1^{\text{p}_1^1}} |
− | |||
− | |||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p}^{\text{p} | + | | <math>\text{p}^{\text{p}^{\text{p}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 16 Big.jpg|65px]] |
− | | [[Image:Rote | + | | [[Image:Rote 16 Big.jpg|90px]] |
+ | |} | ||
|- | |- | ||
− | |||
| | | | ||
+ | {| cellpadding="12" style="text-align:center; width:100%" | ||
+ | | width="10%" | <math>10\!</math> | ||
+ | | width="25%" | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p} | + | \text{p}_1^1 \text{p}_3^1 |
− | & = & \text{p} | + | & = & \text{p}_1^1 \text{p}_{\text{p}_2^1}^1 |
\\[12pt] | \\[12pt] | ||
− | & = & \text{p}_{\text{p} | + | & = & \text{p}_1^1 \text{p}_{\text{p}_{\text{p}_1^1}^1}^1 |
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p} | + | | width="15%" | <math>\text{p} \text{p}_{\text{p}_{\text{p}}}\!</math> |
− | | [[Image:Riff | + | | width="25%" | [[Image:Riff 10 Big.jpg|90px]] |
− | | [[Image:Rote | + | | width="25%" | [[Image:Rote 10 Big.jpg|80px]] |
|- | |- | ||
− | | <math> | + | | <math>11\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p} | + | \text{p}_5^1 |
− | & = & \text{p}_{\text{p} | + | & = & \text{p}_{\text{p}_3^1}^1 |
\\[12pt] | \\[12pt] | ||
− | & = & \text{p}_{\text{p} | + | & = & \text{p}_{\text{p}_{\text{p}_2^1}^1}^1 |
\\[12pt] | \\[12pt] | ||
− | & = & \text{p}_{\text{p} | + | & = & \text{p}_{\text{p}_{\text{p}_{\text{p}_1^1}^1}^1}^1 |
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p}_{\text{p} | + | | <math>\text{p}_{\text{p}_{\text{p}_\text{p}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 11 Big.jpg|90px]] |
− | | [[Image:Rote | + | | [[Image:Rote 11 Big.jpg|40px]] |
|- | |- | ||
− | | <math> | + | | <math>12\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p}_1^ | + | \text{p}_1^2 \text{p}_2^1 |
− | + | & = & \text{p}_1^{\text{p}_1^1} \text{p}_{\text{p}_1^1}^1 | |
− | |||
− | & = & \text{p}_1^{\text{p}_1^1 \text{p}_{\text{p}_1^1}^1 | ||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p}^{\text{p} \text{p}_{\text{p | + | | <math>\text{p}^{\text{p}} \text{p}_{\text{p}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 12 Big.jpg|65px]] |
− | | [[Image:Rote | + | | [[Image:Rote 12 Big.jpg|105px]] |
|- | |- | ||
− | | <math> | + | | <math>13\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p} | + | \text{p}_6^1 |
− | & = & \text{p}_{\text{p}_1^1 | + | & = & \text{p}_{\text{p}_1^1 \text{p}_2^1}^1 |
\\[12pt] | \\[12pt] | ||
− | & = & \text{p}_{\text{p}_1^1 | + | & = & \text{p}_{\text{p}_1^1 \text{p}_{\text{p}_1^1}^1}^1 |
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p}_{\text{p} | + | | <math>\text{p}_{\text{p} \text{p}_{\text{p}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 13 Big.jpg|65px]] |
− | | [[Image:Rote | + | | [[Image:Rote 13 Big.jpg|80px]] |
|- | |- | ||
− | | <math> | + | | <math>14\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p}_1^ | + | \text{p}_1^1 \text{p}_4^1 |
− | & = & \text{p}_1^{\text{p} | + | & = & \text{p}_1^1 \text{p}_{\text{p}_1^2}^1 |
\\[12pt] | \\[12pt] | ||
− | & = & \text{p}_1 | + | & = & \text{p}_1^1 \text{p}_{\text{p}_1^{\text{p}_1^1}}^1 |
− | |||
− | |||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p} | + | | <math>\text{p} \text{p}_{\text{p}^{\text{p}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 14 Big.jpg|90px]] |
− | | [[Image:Rote | + | | [[Image:Rote 14 Big.jpg|105px]] |
|- | |- | ||
− | | <math> | + | | <math>17\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p} | + | \text{p}_7^1 |
− | & = & \text{p} | + | & = & \text{p}_{\text{p}_4^1}^1 |
\\[12pt] | \\[12pt] | ||
− | & = & \text{p} | + | & = & \text{p}_{\text{p}_{\text{p}_1^2}^1}^1 |
\\[12pt] | \\[12pt] | ||
− | & = & \text{p} | + | & = & \text{p}_{\text{p}_{\text{p}_1^{\text{p}_1^1}}^1}^1 |
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p} | + | | <math>\text{p}_{\text{p}_{\text{p}^{\text{p}}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 17 Big.jpg|90px]] |
− | | [[Image:Rote | + | | [[Image:Rote 17 Big.jpg|65px]] |
|- | |- | ||
− | | <math> | + | | <math>18\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p}_1^ | + | \text{p}_1^1 \text{p}_2^2 |
− | + | & = & \text{p}_1^1 \text{p}_{\text{p}_1^1}^{\text{p}_1^1} | |
− | |||
− | & = & \text{p}_1^ | ||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p} | + | | <math>\text{p} \text{p}_{\text{p}}^{\text{p}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 18 Big.jpg|65px]] |
− | | [[Image:Rote | + | | [[Image:Rote 18 Big.jpg|120px]] |
|- | |- | ||
− | | <math> | + | | <math>19\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p} | + | \text{p}_8^1 |
− | & = & \text{p} | + | & = & \text{p}_{\text{p}_1^3}^1 |
\\[12pt] | \\[12pt] | ||
− | & = & \text{p} | + | & = & \text{p}_{\text{p}_1^{\text{p}_2^1}}^1 |
\\[12pt] | \\[12pt] | ||
− | & = & \text{p} | + | & = & \text{p}_{\text{p}_1^{\text{p}_{\text{p}_1^1}^1}}^1 |
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p} | + | | <math>\text{p}_{\text{p}^{\text{p}_{\text{p}}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 19 Big.jpg|90px]] |
− | | [[Image:Rote | + | | [[Image:Rote 19 Big.jpg|65px]] |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
+ | | <math>23\!</math> | ||
| | | | ||
− | + | <math>\begin{array}{lll} | |
− | + | \text{p}_9^1 | |
− | + | & = & \text{p}_{\text{p}_2^2}^1 | |
− | + | \\[12pt] | |
− | + | & = & \text{p}_{\text{p}_{\text{p}_1^1}^{\text{p}_1^1}}^1 | |
− | + | \end{array}</math> | |
− | + | | <math>\text{p}_{\text{p}_{\text{p}}^{\text{p}}}\!</math> | |
− | + | | [[Image:Riff 23 Big.jpg|65px]] | |
− | + | | [[Image:Rote 23 Big.jpg|80px]] | |
− | |||
− | { | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
+ | | <math>25\!</math> | ||
| | | | ||
− | |||
− | |||
− | |||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p}_2^1 & = & \text{p}_{\text{p}_1^1}^1 | + | \text{p}_3^2 |
+ | & = & \text{p}_{\text{p}_2^1}^{\text{p}_1^1} | ||
+ | \\[12pt] | ||
+ | & = & \text{p}_{\text{p}_{\text{p}_1^1}^1}^{\text{p}_1^1} | ||
\end{array}</math> | \end{array}</math> | ||
− | + | | <math>\text{p}_{\text{p}_{\text{p}}}^{\text{p}}\!</math> | |
− | + | | [[Image:Riff 25 Big.jpg|65px]] | |
− | + | | [[Image:Rote 25 Big.jpg|80px]] | |
− | |||
|- | |- | ||
− | | <math> | + | | <math>27\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p}_1^ | + | \text{p}_2^3 |
+ | & = & \text{p}_{\text{p}_1^1}^{\text{p}_2^1} | ||
+ | \\[12pt] | ||
+ | & = & \text{p}_{\text{p}_1^1}^{\text{p}_{\text{p}_1^1}^1} | ||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p}^\text{p}\!</math> | + | | <math>\text{p}_{\text{p}}^{\text{p}_{\text{p}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 27 Big.jpg|65px]] |
− | | [[Image:Rote | + | | [[Image:Rote 27 Big.jpg|80px]] |
− | |||
− | |||
|- | |- | ||
+ | | <math>32\!</math> | ||
| | | | ||
− | + | <math>\begin{array}{lll} | |
− | + | \text{p}_1^5 | |
− | + | & = & \text{p}_1^{\text{p}_3^1} | |
− | <math>\begin{array}{lll} | + | \\[12pt] |
− | \text{p}_3^1 | + | & = & \text{p}_1^{\text{p}_{\text{p}_2^1}^1} |
− | & = & \text{p}_{\text{p}_2^1}^1 | + | \\[12pt] |
− | \\[ | + | & = & \text{p}_1^{\text{p}_{\text{p}_{\text{p}_1^1}^1}^1} |
− | & = & \text{p}_{\text{p}_{\text{p}_1^1}^1}^1 | ||
\end{array}</math> | \end{array}</math> | ||
− | + | | <math>\text{p}^{\text{p}_{\text{p}_{\text{p}}}}\!</math> | |
− | + | | [[Image:Riff 32 Big.jpg|90px]] | |
− | + | | [[Image:Rote 32 Big.jpg|65px]] | |
− | |||
|- | |- | ||
− | | <math> | + | | <math>49\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p}_1^ | + | \text{p}_4^2 |
− | & = & \text{p}_1^ | + | & = & \text{p}_{\text{p}_1^2}^{\text{p}_1^1} |
+ | \\[12pt] | ||
+ | & = & \text{p}_{\text{p}_1^{\text{p}_1^1}}^{\text{p}_1^1} | ||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p} \text{p} | + | | <math>\text{p}_{\text{p}^{\text{p}}}^{\text{p}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 49 Big.jpg|65px]] |
− | | [[Image:Rote | + | | [[Image:Rote 49 Big.jpg|80px]] |
− | |||
|- | |- | ||
− | | <math> | + | | <math>53\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p} | + | \text{p}_{16}^1 |
− | & = & \text{p}_{\text{p}_1^2}^1 | + | & = & \text{p}_{\text{p}_1^4}^1 |
− | \\[ | + | \\[12pt] |
− | & = & \text{p}_{\text{p}_1^{\text{p}_1^1}}^1 | + | & = & \text{p}_{\text{p}_1^{\text{p}_1^2}}^1 |
+ | \\[12pt] | ||
+ | & = & \text{p}_{\text{p}_1^{\text{p}_1^{\text{p}_1^1}}}^1 | ||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p}_{\text{p}^{\text{p}}}\!</math> | + | | <math>\text{p}_{\text{p}^{\text{p}^{\text{p}}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 53 Big.jpg|90px]] |
− | | [[Image:Rote | + | | [[Image:Rote 53 Big.jpg|90px]] |
− | |||
|- | |- | ||
− | | <math> | + | | <math>64\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p}_1^ | + | \text{p}_1^6 |
− | & = & \text{p}_1^{\text{p}_2^1} | + | & = & \text{p}_1^{\text{p}_1^1 \text{p}_2^1} |
− | \\[ | + | \\[12pt] |
− | & = & \text{p}_1^{\text{p}_{\text{p}_1^1}^1} | + | & = & \text{p}_1^{\text{p}_1^1 \text{p}_{\text{p}_1^1}^1} |
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p}^{\text{p}_{\text{p}}}\!</math> | + | | <math>\text{p}^{\text{p} \text{p}_{\text{p}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 64 Big.jpg|65px]] |
− | | [[Image:Rote | + | | [[Image:Rote 64 Big.jpg|105px]] |
− | |||
|- | |- | ||
− | | <math> | + | | <math>81\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p}_2^2 | + | \text{p}_2^4 |
− | & = & \text{p}_{\text{p}_1^1}^{\text{p}_1^1} | + | & = & \text{p}_{\text{p}_1^1}^{\text{p}_1^2} |
+ | \\[12pt] | ||
+ | & = & \text{p}_{\text{p}_1^1}^{\text{p}_1^{\text{p}_1^1}} | ||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p}_\text{p}^\text{p}\!</math> | + | | <math>\text{p}_{\text{p}}^{\text{p}^{\text{p}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 81 Big.jpg|65px]] |
− | | [[Image:Rote | + | | [[Image:Rote 81 Big.jpg|105px]] |
− | |||
|- | |- | ||
− | | <math> | + | | <math>128\!</math> |
| | | | ||
<math>\begin{array}{lll} | <math>\begin{array}{lll} | ||
− | \text{p}_1^ | + | \text{p}_1^7 |
− | & = & \text{p}_1^{\text{p}_1^2} | + | & = & \text{p}_1^{\text{p}_4^1} |
− | \\[ | + | \\[12pt] |
− | & = & \text{p}_1^{\text{p}_1^{\text{p}_1^1}} | + | & = & \text{p}_1^{\text{p}_{\text{p}_1^2}^1} |
+ | \\[12pt] | ||
+ | & = & \text{p}_1^{\text{p}_{\text{p}_1^{\text{p}_1^1}}^1} | ||
\end{array}</math> | \end{array}</math> | ||
− | | <math>\text{p}^{\text{p}^{\text{p}}}\!</math> | + | | <math>\text{p}^{\text{p}_{\text{p}^{\text{p}}}}\!</math> |
− | | [[Image:Riff | + | | [[Image:Riff 128 Big.jpg|90px]] |
− | | [[Image:Rote | + | | [[Image:Rote 128 Big.jpg|90px]] |
− | | <math> | + | |- |
− | |} | + | | <math>256\!</math> |
− | + | | | |
− | + | <math>\begin{array}{lll} | |
− | == | + | \text{p}_1^8 |
− | + | & = & \text{p}_1^{\text{p}_1^3} | |
− | + | \\[12pt] | |
− | + | & = & \text{p}_1^{\text{p}_1^{\text{p}_2^1}} | |
− | + | \\[12pt] | |
− | + | & = & \text{p}_1^{\text{p}_1^{\text{p}_{\text{p}_1^1}^1}} | |
− | + | \end{array}</math> | |
+ | | <math>\text{p}^{\text{p}^{\text{p}_{\text{p}}}}\!</math> | ||
+ | | [[Image:Riff 256 Big.jpg|90px]] | ||
+ | | [[Image:Rote 256 Big.jpg|90px]] | ||
+ | |- | ||
+ | | <math>512\!</math> | ||
| | | | ||
− | <math>\begin{array}{ | + | <math>\begin{array}{lll} |
− | + | \text{p}_1^9 | |
− | & | + | & = & \text{p}_1^{\text{p}_2^2} |
− | = \{ | + | \\[12pt] |
− | + | & = & \text{p}_1^{\text{p}_{\text{p}_1^1}^{\text{p}_1^1}} | |
− | + | \end{array}</math> | |
− | + | | <math>\text{p}^{\text{p}_{\text{p}}^{\text{p}}}\!</math> | |
− | + | | [[Image:Riff 512 Big.jpg|65px]] | |
− | \ | + | | [[Image:Rote 512 Big.jpg|105px]] |
− | + | |- | |
− | \\ | + | | <math>65536\!</math> |
− | + | | | |
− | \\ | + | <math>\begin{array}{lll} |
− | + | \text{p}_1^{16} | |
− | \\ | + | & = & \text{p}_1^{\text{p}_1^4} |
− | + | \\[12pt] | |
+ | & = & \text{p}_1^{\text{p}_1^{\text{p}_1^2}} | ||
+ | \\[12pt] | ||
+ | & = & \text{p}_1^{\text{p}_1^{\text{p}_1^{\text{p}_1^1}}} | ||
\end{array}</math> | \end{array}</math> | ||
+ | | <math>\text{p}^{\text{p}^{\text{p}^{\text{p}}}}\!</math> | ||
+ | | [[Image:Riff 65536 Big.jpg|90px]] | ||
+ | | [[Image:Rote 65536 Big.jpg|115px]] | ||
+ | |} | ||
|} | |} | ||
Line 1,068: | Line 1,195: | ||
* '''Nodes in riff (rooted index-functional forest) for n.''' | * '''Nodes in riff (rooted index-functional forest) for n.''' | ||
− | * [http://oeis.org | + | * [http://oeis.org/A062537 OEIS Entry for A062537]. |
{| align="center" border="1" cellpadding="10" | {| align="center" border="1" cellpadding="10" | ||
Line 1,329: | Line 1,456: | ||
* '''Smallest j with n nodes in its riff (rooted index-functional forest).''' | * '''Smallest j with n nodes in its riff (rooted index-functional forest).''' | ||
− | * [http://oeis.org | + | * [http://oeis.org/A062860 OEIS Entry for A062860]. |
{| align="center" border="1" cellpadding="10" | {| align="center" border="1" cellpadding="10" | ||
Line 1,380: | Line 1,507: | ||
* '''a(n) = rhig(n) = rote height in gammas of n, where the "rote" corresponding to a positive integer n is a graph derived from the primes factorization of n, as illustrated in the comments.''' | * '''a(n) = rhig(n) = rote height in gammas of n, where the "rote" corresponding to a positive integer n is a graph derived from the primes factorization of n, as illustrated in the comments.''' | ||
− | * [http://oeis.org | + | * [http://oeis.org/A109301 OEIS Entry for A109301]. |
+ | |||
+ | ; Example | ||
+ | |||
+ | : <math>802701 = 9 \cdot 89189 = \text{p}_2^2 \text{p}_{8638}^1</math> | ||
+ | |||
+ | : <math>\text{Writing}~ (\operatorname{prime}(i))^j ~\text{as}~ i\!:\!j, ~\text{we have:}</math> | ||
+ | |||
+ | : <math>\begin{array}{lllll} | ||
+ | 802701 | ||
+ | & = & 9 \cdot 89189 | ||
+ | & = & 2\!:\!2 ~~ 8638\!:\!1 | ||
+ | \\ | ||
+ | 8638 | ||
+ | & = & 2 \cdot 7 \cdot 617 | ||
+ | & = & 1\!:\!1 ~~ 4\!:\!1 ~~ 113\!:\!1 | ||
+ | \\ | ||
+ | 113 | ||
+ | & & | ||
+ | & = & 30\!:\!1 | ||
+ | \\ | ||
+ | 30 | ||
+ | & = & 2 \cdot 3 \cdot 5 | ||
+ | & = & 1\!:\!1 ~~ 2\!:\!1 ~~ 3\!:\!1 | ||
+ | \\ | ||
+ | 4 | ||
+ | & & | ||
+ | & = & 1\!:\!2 | ||
+ | \\ | ||
+ | 3 | ||
+ | & & | ||
+ | & = & 2\!:\!1 | ||
+ | \\ | ||
+ | 2 | ||
+ | & & | ||
+ | & = & 1\!:\!1 | ||
+ | \end{array}</math> | ||
+ | |||
+ | : <math>\text{So the rote of 802701 is the following graph:}\!</math> | ||
+ | |||
+ | :{| border="1" cellpadding="20" | ||
+ | | [[Image:Rote 802701 Big.jpg|330px]] | ||
+ | |} | ||
+ | |||
+ | : <math>\text{By inspection, the rote height of 802701 is 6.}\!</math> | ||
+ | |||
+ | <br> | ||
{| align="center" border="1" cellpadding="6" | {| align="center" border="1" cellpadding="6" | ||
Line 1,635: | Line 1,808: | ||
<p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> | <p><math>\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!</math></p><br> | ||
<p><math>a(60) ~=~ 3</math></p> | <p><math>a(60) ~=~ 3</math></p> | ||
+ | |} | ||
+ | |||
+ | ==Miscellaneous Examples== | ||
+ | |||
+ | {| align="center" border="1" width="96%" | ||
+ | |+ style="height:24px" | <math>\text{Integers, Riffs, Rotes}\!</math> | ||
+ | |- style="height:50px; background:#f0f0ff" | ||
+ | | | ||
+ | {| cellpadding="12" style="background:#f0f0ff; text-align:center; width:100%" | ||
+ | | width="10%" | <math>\text{Integer}\!</math> | ||
+ | | width="45%" | <math>\text{Riff}\!</math> | ||
+ | | width="45%" | <math>\text{Rote}\!</math> | ||
+ | |} | ||
+ | |- | ||
+ | | | ||
+ | {| cellpadding="12" style="text-align:center; width:100%" | ||
+ | | width="10%" | <math>1\!</math> | ||
+ | | width="45%" | | ||
+ | | width="45%" | [[Image:Rote 1 Big.jpg|15px]] | ||
+ | |- | ||
+ | | <math>2\!</math> | ||
+ | | [[Image:Riff 2 Big.jpg|15px]] | ||
+ | | [[Image:Rote 2 Big.jpg|30px]] | ||
+ | |- | ||
+ | | <math>3\!</math> | ||
+ | | [[Image:Riff 3 Big.jpg|30px]] | ||
+ | | [[Image:Rote 3 Big.jpg|30px]] | ||
+ | |- | ||
+ | | <math>4\!</math> | ||
+ | | [[Image:Riff 4 Big.jpg|30px]] | ||
+ | | [[Image:Rote 4 Big.jpg|48px]] | ||
+ | |- | ||
+ | | <math>360\!</math> | ||
+ | | [[Image:Riff 360 Big.jpg|120px]] | ||
+ | | [[Image:Rote 360 Big.jpg|135px]] | ||
+ | |- | ||
+ | | <math>2010\!</math> | ||
+ | | [[Image:Riff 2010 Big.jpg|138px]] | ||
+ | | [[Image:Rote 2010 Big.jpg|144px]] | ||
+ | |- | ||
+ | | <math>2011\!</math> | ||
+ | | [[Image:Riff 2011 Big.jpg|84px]] | ||
+ | | [[Image:Rote 2011 Big.jpg|120px]] | ||
+ | |- | ||
+ | | <math>2012\!</math> | ||
+ | | [[Image:Riff 2012 Big.jpg|100px]] | ||
+ | | [[Image:Rote 2012 Big.jpg|125px]] | ||
+ | |- | ||
+ | | <math>2500\!</math> | ||
+ | | [[Image:Riff 2500 Big.jpg|66px]] | ||
+ | | [[Image:Rote 2500 Big.jpg|125px]] | ||
+ | |- | ||
+ | | <math>802701\!</math> | ||
+ | | [[Image:Riff 802701 Big.jpg|156px]] | ||
+ | | [[Image:Rote 802701 Big.jpg|245px]] | ||
+ | |- | ||
+ | | <math>123456789\!</math> | ||
+ | | [[Image:Riff 123456789 Big.jpg|162px]] | ||
+ | | [[Image:Rote 123456789 Big.jpg|256px]] | ||
+ | |} | ||
|} | |} |
Latest revision as of 22:00, 30 January 2016
Idea
Let \(\text{p}_i\!\) be the \(i^\text{th}\!\) prime, where the positive integer \(i\!\) is called the index of the prime \(\text{p}_i\!\) and the indices are taken in such a way that \(\text{p}_1 = 2.\!\) Thus the sequence of primes begins as follows:
\(\begin{matrix} \text{p}_1 = 2, & \text{p}_2 = 3, & \text{p}_3 = 5, & \text{p}_4 = 7, & \text{p}_5 = 11, & \text{p}_6 = 13, & \text{p}_7 = 17, & \text{p}_8 = 19, & \ldots \end{matrix}\) |
The prime factorization of a positive integer \(n\!\) can be written in the following form:
\(n ~=~ \prod_{k = 1}^{\ell} \text{p}_{i(k)}^{j(k)},\!\) |
where \(\text{p}_{i(k)}^{j(k)}\!\) is the \(k^\text{th}\!\) prime power in the factorization and \(\ell\!\) is the number of distinct prime factors dividing \(n.\!\) The factorization of \(1\!\) is defined as \(1\!\) in accord with the convention that an empty product is equal to \(1.\!\)
Let \(I(n)\!\) be the set of indices of primes that divide \(n\!\) and let \(j(i, n)\!\) be the number of times that \(\text{p}_i\!\) divides \(n.\!\) Then the prime factorization of \(n\!\) can be written in the following alternative form:
\(n ~=~ \prod_{i \in I(n)} \text{p}_{i}^{j(i, n)}.\!\) |
For example:
\(\begin{matrix} 123456789 & = & 3^2 \cdot 3607 \cdot 3803 & = & \text{p}_2^2 \text{p}_{504}^1 \text{p}_{529}^1. \end{matrix}\) |
Each index \(i\!\) and exponent \(j\!\) appearing in the prime factorization of a positive integer \(n\!\) is itself a positive integer, and thus has a prime factorization of its own.
Continuing with the same example, the index \(504\!\) has the factorization \(2^3 \cdot 3^2 \cdot 7 = \text{p}_1^3 \text{p}_2^2 \text{p}_4^1\!\) and the index \(529\!\) has the factorization \({23}^2 = \text{p}_9^2.\!\) Taking this information together with previously known factorizations allows the following replacements to be made in the expression above:
\(\begin{array}{rcl} 2 & \mapsto & \text{p}_1^1 \'"`UNIQ-MathJax1-QINU`"' '"`UNIQ-MathJax2-QINU`"' '"`UNIQ-MathJax3-QINU`"' '"`UNIQ-MathJax4-QINU`"' :{| border="1" cellpadding="20" | [[Image:Rote 802701 Big.jpg|330px]] |} '"`UNIQ-MathJax5-QINU`"' <br> {| align="center" border="1" cellpadding="6" |+ style="height:25px" | \(a(n) = \text{Rote Height of}~ n\) |
\(1\!\) \(a(1) ~=~ 0\) |
\(\text{p}\!\) \(a(2) ~=~ 1\) |
\(\text{p}_\text{p}\!\) \(a(3) ~=~ 2\) |
\(\text{p}^\text{p}\!\) \(a(4) ~=~ 2\) |
\(\text{p}_{\text{p}_\text{p}}\!\) \(a(5) ~=~ 3\) |
\(\text{p} \text{p}_\text{p}\!\) \(a(6) ~=~ 2\) |
\(\text{p}_{\text{p}^\text{p}}\!\) \(a(7) ~=~ 3\) |
\(\text{p}^{\text{p}_\text{p}}\!\) \(a(8) ~=~ 3\) |
\(\text{p}_\text{p}^\text{p}\!\) \(a(9) ~=~ 2\) |
\(\text{p} \text{p}_{\text{p}_\text{p}}\!\) \(a(10) ~=~ 3\) | |
\(\text{p}_{\text{p}_{\text{p}_\text{p}}}\!\) \(a(11) ~=~ 4\) |
\(\text{p}^\text{p} \text{p}_\text{p}\!\) \(a(12) ~=~ 2\) |
\(\text{p}_{\text{p} \text{p}_\text{p}}\!\) \(a(13) ~=~ 3\) |
\(\text{p} \text{p}_{\text{p}^\text{p}}\!\) \(a(14) ~=~ 3\) |
\(\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\) \(a(15) ~=~ 3\) | |
\(\text{p}^{\text{p}^\text{p}}\!\) \(a(16) ~=~ 3\) |
\(\text{p}_{\text{p}_{\text{p}^\text{p}}}\!\) \(a(17) ~=~ 4\) |
\(\text{p} \text{p}_\text{p}^\text{p}\!\) \(a(18) ~=~ 2\) |
\(\text{p}_{\text{p}^{\text{p}_\text{p}}}\!\) \(a(19) ~=~ 4\) |
\(\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\) \(a(20) ~=~ 3\) | |
\(\text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\) \(a(21) ~=~ 3\) |
\(\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\) \(a(22) ~=~ 4\) |
\(\text{p}_{\text{p}_\text{p}^\text{p}}\!\) \(a(23) ~=~ 3\) |
\(\text{p}^{\text{p}_\text{p}} \text{p}_\text{p}\!\) \(a(24) ~=~ 3\) |
\(\text{p}_{\text{p}_\text{p}}^\text{p}\!\) \(a(25) ~=~ 3\) | |
\(\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\) \(a(26) ~=~ 3\) |
\(\text{p}_\text{p}^{\text{p}_\text{p}}\!\) \(a(27) ~=~ 3\) |
\(\text{p}^\text{p} \text{p}_{\text{p}^\text{p}}\!\) \(a(28) ~=~ 3\) |
\(\text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\) \(a(29) ~=~ 4\) |
\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\) \(a(30) ~=~ 3\) | |
\(\text{p}_{\text{p}_{\text{p}_{\text{p}_\text{p}}}}\!\) \(a(31) ~=~ 5\) |
\(\text{p}^{\text{p}_{\text{p}_\text{p}}}\!\) \(a(32) ~=~ 4\) |
\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\) \(a(33) ~=~ 4\) |
\(\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\) \(a(34) ~=~ 4\) |
\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\) \(a(35) ~=~ 3\) | |
\(\text{p}^\text{p} \text{p}_\text{p}^\text{p}\!\) \(a(36) ~=~ 2\) |
\(\text{p}_{\text{p}^\text{p} \text{p}_\text{p}}\!\) \(a(37) ~=~ 3\) |
\(\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\) \(a(38) ~=~ 4\) |
\(\text{p}_\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\) \(a(39) ~=~ 3\) |
\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}_\text{p}}\!\) \(a(40) ~=~ 3\) | |
\(\text{p}_{\text{p}_{\text{p} \text{p}_\text{p}}}\!\) \(a(41) ~=~ 4\) |
\(\text{p} \text{p}_\text{p} \text{p}_{\text{p}^\text{p}}\!\) \(a(42) ~=~ 3\) |
\(\text{p}_{\text{p} \text{p}_{\text{p}^\text{p}}}\!\) \(a(43) ~=~ 4\) |
\(\text{p}^\text{p} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\) \(a(44) ~=~ 4\) |
\(\text{p}_\text{p}^\text{p} \text{p}_{\text{p}_\text{p}}\!\) \(a(45) ~=~ 3\) | |
\(\text{p} \text{p}_{\text{p}_\text{p}^\text{p}}\!\) \(a(46) ~=~ 3\) |
\(\text{p}_{\text{p}_\text{p} \text{p}_{\text{p}_\text{p}}}\!\) \(a(47) ~=~ 4\) |
\(\text{p}^{\text{p}^\text{p}} \text{p}_\text{p}\!\) \(a(48) ~=~ 3\) |
\(\text{p}_{\text{p}^\text{p}}^\text{p}\!\) \(a(49) ~=~ 3\) |
\(\text{p} \text{p}_{\text{p}_\text{p}}^\text{p}\!\) \(a(50) ~=~ 3\) | |
\(\text{p}_\text{p} \text{p}_{\text{p}_{\text{p}^\text{p}}}\!\) \(a(51) ~=~ 4\) |
\(\text{p}^\text{p} \text{p}_{\text{p} \text{p}_\text{p}}\!\) \(a(52) ~=~ 3\) |
\(\text{p}_{\text{p}^{\text{p}^\text{p}}}\!\) \(a(53) ~=~ 4\) |
\(\text{p} \text{p}_\text{p}^{\text{p}_\text{p}}\!\) \(a(54) ~=~ 3\) |
\(\text{p}_{\text{p}_\text{p}} \text{p}_{\text{p}_{\text{p}_\text{p}}}\!\) \(a(55) ~=~ 4\) | |
\(\text{p}^{\text{p}_\text{p}} \text{p}_{\text{p}^\text{p}}\!\) \(a(56) ~=~ 3\) |
\(\text{p}_\text{p} \text{p}_{\text{p}^{\text{p}_\text{p}}}\!\) \(a(57) ~=~ 4\) |
\(\text{p} \text{p}_{\text{p} \text{p}_{\text{p}_\text{p}}}\!\) \(a(58) ~=~ 4\) |
\(\text{p}_{\text{p}_{\text{p}_{\text{p}^\text{p}}}}\!\) \(a(59) ~=~ 5\) |
\(\text{p}^\text{p} \text{p}_\text{p} \text{p}_{\text{p}_\text{p}}\!\) \(a(60) ~=~ 3\) |
Miscellaneous Examples
| |||||||||||||||||||||||||||||||||
|