Difference between revisions of "Exclusive disjunction"

MyWikiBiz, Author Your Legacy — Friday November 01, 2024
Jump to navigationJump to search
(→‎Document history: del xs www's)
 
(15 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
<font size="3">&#9758;</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
 
<font size="3">&#9758;</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
  
'''Exclusive disjunction''', also known as '''logical inequality''' or '''symmetric difference''', is an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' just in case exactly one of its operands is true.
+
'''Exclusive disjunction''', also known as '''logical inequality''' or '''symmetric difference''', is an operation on two logical values, typically the values of two propositions, that produces a value of ''true'' just in case exactly one of its operands is true.
  
The [[truth table]] of '''p XOR q''' (also written as '''p + q''' or '''p &ne; q''') is as follows:
+
The [[truth table]] of <math>p ~\operatorname{XOR}~ q,</math> also written <math>p + q~\!</math> or <math>p \ne q,\!</math> appears below:
  
 
<br>
 
<br>
  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:#f8f8ff; font-weight:bold; text-align:center; width:45%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:45%"
|+ '''Exclusive Disjunction'''
+
|+ style="height:30px" | <math>\text{Exclusive Disjunction}\!</math>
|- style="background:#e6e6ff"
+
|- style="height:40px; background:#f0f0ff"
! style="width:15%" | p
+
| style="width:33%" | <math>p\!</math>
! style="width:15%" | q
+
| style="width:33%" | <math>q\!</math>
! style="width:15%" | p XOR q
+
| style="width:33%" | <math>p ~\operatorname{XOR}~ q</math>
 
|-
 
|-
| F || F || F
+
| <math>\operatorname{F}</math> || <math>\operatorname{F}</math> || <math>\operatorname{F}</math>
 
|-
 
|-
| F || T || T
+
| <math>\operatorname{F}</math> || <math>\operatorname{T}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| T || F || T
+
| <math>\operatorname{T}</math> || <math>\operatorname{F}</math> || <math>\operatorname{T}</math>
 
|-
 
|-
| T || T || F
+
| <math>\operatorname{T}</math> || <math>\operatorname{T}</math> || <math>\operatorname{F}</math>
 
|}
 
|}
  
 
<br>
 
<br>
  
The following equivalents can then be deduced:
+
The following equivalents may then be deduced:
  
: <math>\begin{matrix}
+
{| align="center" cellspacing="10" width="90%"
p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\
+
|
\\
+
<math>\begin{matrix}
       & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\
+
p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q)
\\
+
\\[6pt]
 +
       & = & (p \lor q) & \land & (\lnot p \lor \lnot q)
 +
\\[6pt]
 
       & = & (p \lor q) & \land & \lnot (p \land q)
 
       & = & (p \lor q) & \land & \lnot (p \land q)
 
\end{matrix}</math>
 
\end{matrix}</math>
 +
|}
  
 
==Syllabus==
 
==Syllabus==
Line 39: Line 42:
 
===Focal nodes===
 
===Focal nodes===
  
{{col-begin}}
 
{{col-break}}
 
 
* [[Inquiry Live]]
 
* [[Inquiry Live]]
{{col-break}}
 
 
* [[Logic Live]]
 
* [[Logic Live]]
{{col-end}}
 
  
 
===Peer nodes===
 
===Peer nodes===
  
{{col-begin}}
+
* [http://intersci.ss.uci.edu/wiki/index.php/Exclusive_disjunction Exclusive Disjunction @ InterSciWiki]
{{col-break}}
 
 
* [http://mywikibiz.com/Exclusive_disjunction Exclusive Disjunction @ MyWikiBiz]
 
* [http://mywikibiz.com/Exclusive_disjunction Exclusive Disjunction @ MyWikiBiz]
* [http://mathweb.org/wiki/Exclusive_disjunction Exclusive Disjunction @ MathWeb Wiki]
+
* [http://ref.subwiki.org/wiki/Exclusive_disjunction Exclusive Disjunction @ Subject Wikis]
* [http://netknowledge.org/wiki/Exclusive_disjunction Exclusive Disjunction @ NetKnowledge]
+
* [http://en.wikiversity.org/wiki/Exclusive_disjunction Exclusive Disjunction @ Wikiversity]
{{col-break}}
+
* [http://beta.wikiversity.org/wiki/Exclusive_disjunction Exclusive Disjunction @ Wikiversity Beta]
* [http://wiki.oercommons.org/mediawiki/index.php/Exclusive_disjunction Exclusive Disjunction @ OER Commons]
 
* [http://p2pfoundation.net/Exclusive_Disjunction Exclusive Disjunction @ P2P Foundation]
 
* [http://semanticweb.org/wiki/Exclusive_disjunction Exclusive Disjunction @ SemanticWeb]
 
{{col-end}}
 
  
 
===Logical operators===
 
===Logical operators===
Line 122: Line 116:
 
{{col-break}}
 
{{col-break}}
 
* [[Inquiry]]
 
* [[Inquiry]]
 +
* [[Dynamics of inquiry]]
 +
{{col-break}}
 +
* [[Semeiotic]]
 
* [[Logic of information]]
 
* [[Logic of information]]
 
{{col-break}}
 
{{col-break}}
Line 128: Line 125:
 
{{col-break}}
 
{{col-break}}
 
* [[Pragmatic maxim]]
 
* [[Pragmatic maxim]]
* [[Pragmatic theory of truth]]
+
* [[Truth theory]]
{{col-break}}
 
* [[Semeiotic]]
 
* [[Semiotic information]]
 
 
{{col-end}}
 
{{col-end}}
  
 
===Related articles===
 
===Related articles===
  
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Introduction_to_Inquiry_Driven_Systems Jon Awbrey, &ldquo;Introduction To Inquiry Driven Systems&rdquo;]
+
{{col-begin}}
 
+
{{col-break}}
* [http://mywikibiz.com/Directory:Jon_Awbrey/Essays/Prospects_For_Inquiry_Driven_Systems Jon Awbrey, &ldquo;Prospects For Inquiry Driven Systems&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Cactus_Language Cactus Language]
 
+
* [http://intersci.ss.uci.edu/wiki/index.php/Futures_Of_Logical_Graphs Futures Of Logical Graphs]
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Inquiry_Driven_Systems Jon Awbrey, &ldquo;Inquiry Driven Systems : Inquiry Into Inquiry&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Propositional_Equation_Reasoning_Systems Propositional Equation Reasoning Systems]
 
+
{{col-break}}
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Propositional_Equation_Reasoning_Systems Jon Awbrey, &ldquo;Propositional Equation Reasoning Systems&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_:_Introduction Differential Logic : Introduction]
 
+
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Propositional_Calculus Differential Propositional Calculus]
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Differential_Logic_:_Introduction Jon Awbrey, &ldquo;Differential Logic : Introduction&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Differential_Logic_and_Dynamic_Systems_2.0 Differential Logic and Dynamic Systems]
 
+
{{col-break}}
* [http://planetmath.org/encyclopedia/DifferentialPropositionalCalculus.html Jon Awbrey, &ldquo;Differential Propositional Calculus&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Prospects_for_Inquiry_Driven_Systems Prospects for Inquiry Driven Systems]
 
+
* [http://intersci.ss.uci.edu/wiki/index.php/Introduction_to_Inquiry_Driven_Systems Introduction to Inquiry Driven Systems]
* [http://mywikibiz.com/Directory:Jon_Awbrey/Papers/Differential_Logic_and_Dynamic_Systems_2.0 Jon Awbrey, &ldquo;Differential Logic and Dynamic Systems&rdquo;]
+
* [http://intersci.ss.uci.edu/wiki/index.php/Inquiry_Driven_Systems Inquiry Driven Systems : Inquiry Into Inquiry]
 +
{{col-end}}
  
 
==Document history==
 
==Document history==
Line 154: Line 149:
 
Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders.
 
Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders.
  
{{col-begin}}
+
* [http://intersci.ss.uci.edu/wiki/index.php/Exclusive_disjunction Exclusive Disjunction], [http://intersci.ss.uci.edu/ InterSciWiki]
{{col-break}}
 
 
* [http://mywikibiz.com/Exclusive_disjunction Exclusive Disjunction], [http://mywikibiz.com/ MyWikiBiz]
 
* [http://mywikibiz.com/Exclusive_disjunction Exclusive Disjunction], [http://mywikibiz.com/ MyWikiBiz]
 +
* [http://ref.subwiki.org/wiki/Exclusive_disjunction Exclusive Disjunction], [http://ref.subwiki.org/ Subject Wikis]
 +
* [http://wikinfo.org/w/index.php/Exclusive_disjunction Exclusive Disjunction], [http://wikinfo.org/w/ Wikinfo]
 +
* [http://en.wikiversity.org/wiki/Exclusive_disjunction Exclusive Disjunction], [http://en.wikiversity.org/ Wikiversity]
 
* [http://beta.wikiversity.org/wiki/Exclusive_disjunction Exclusive Disjunction], [http://beta.wikiversity.org/ Wikiversity Beta]
 
* [http://beta.wikiversity.org/wiki/Exclusive_disjunction Exclusive Disjunction], [http://beta.wikiversity.org/ Wikiversity Beta]
* [http://getwiki.net/-Exclusive_Disjunction Exclusive Disjunction], [http://getwiki.net/ GetWiki]
 
{{col-break}}
 
* [http://wikinfo.org/index.php/Exclusive_disjunction Exclusive Disjunction], [http://wikinfo.org/ Wikinfo]
 
* [http://textop.org/wiki/index.php?title=Exclusive_disjunction Exclusive Disjunction], [http://textop.org/wiki/ Textop Wiki]
 
 
* [http://en.wikipedia.org/w/index.php?title=Exclusive_disjunction&oldid=75153068 Exclusive Disjunction], [http://en.wikipedia.org/ Wikipedia]
 
* [http://en.wikipedia.org/w/index.php?title=Exclusive_disjunction&oldid=75153068 Exclusive Disjunction], [http://en.wikipedia.org/ Wikipedia]
{{col-end}}
 
 
<br><sharethis />
 
  
 
[[Category:Inquiry]]
 
[[Category:Inquiry]]
 
[[Category:Open Educational Resource]]
 
[[Category:Open Educational Resource]]
 
[[Category:Peer Educational Resource]]
 
[[Category:Peer Educational Resource]]
 +
[[Category:Charles Sanders Peirce]]
 
[[Category:Computer Science]]
 
[[Category:Computer Science]]
 
[[Category:Formal Languages]]
 
[[Category:Formal Languages]]

Latest revision as of 01:45, 31 October 2015

This page belongs to resource collections on Logic and Inquiry.

Exclusive disjunction, also known as logical inequality or symmetric difference, is an operation on two logical values, typically the values of two propositions, that produces a value of true just in case exactly one of its operands is true.

The truth table of \(p ~\operatorname{XOR}~ q,\) also written \(p + q~\!\) or \(p \ne q,\!\) appears below:


\(\text{Exclusive Disjunction}\!\)
\(p\!\) \(q\!\) \(p ~\operatorname{XOR}~ q\)
\(\operatorname{F}\) \(\operatorname{F}\) \(\operatorname{F}\)
\(\operatorname{F}\) \(\operatorname{T}\) \(\operatorname{T}\)
\(\operatorname{T}\) \(\operatorname{F}\) \(\operatorname{T}\)
\(\operatorname{T}\) \(\operatorname{T}\) \(\operatorname{F}\)


The following equivalents may then be deduced:

\(\begin{matrix} p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\[6pt] & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\[6pt] & = & (p \lor q) & \land & \lnot (p \land q) \end{matrix}\)

Syllabus

Focal nodes

Peer nodes

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Relational concepts

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Information, Inquiry

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Related articles

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.