Difference between revisions of "User:Jon Awbrey/WORDPRESS"
MyWikiBiz, Author Your Legacy — Friday November 08, 2024
Jump to navigationJump to searchJon Awbrey (talk | contribs) (→Work 2) |
Jon Awbrey (talk | contribs) |
||
(20 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | '''WordPress versions of HTML and LaTeX markup''' | ||
+ | |||
+ | <div class="nonumtoc">__TOC__</div> | ||
+ | |||
+ | ==Tables== | ||
+ | |||
+ | * Examples of LaTeX tabular markup from [http://inquiryintoinquiry.com/tables/ Inquiry Into Inquiry : Tables] | ||
+ | |||
+ | ===Boolean Functions and Propositional Calculus=== | ||
+ | |||
+ | ====Table A1. Propositional Forms on Two Variables==== | ||
+ | |||
+ | <pre> | ||
+ | $latex | ||
+ | \begin{tabular}{|*{7}{c|}} | ||
+ | \multicolumn{7}{c}{Table A1. Propositional Forms on Two Variables} \\ | ||
+ | \hline | ||
+ | \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)&\(L_5\)&\(L_6\) \\ | ||
+ | \hline | ||
+ | &&\(x=\)&1 1 0 0&&& \\ | ||
+ | &&\(y=\)&1 0 1 0&&& \\ | ||
+ | \hline | ||
+ | \(f_{0}\)& | ||
+ | \(f_{0000}\)&& | ||
+ | 0 0 0 0& | ||
+ | \((~)\)& | ||
+ | false& | ||
+ | \(0\) | ||
+ | \\ | ||
+ | \(f_{1}\)& | ||
+ | \(f_{0001}\)&& | ||
+ | 0 0 0 1& | ||
+ | \((x)(y)\)& | ||
+ | neither \(x\) nor \(y\)& | ||
+ | \(\lnot x \land \lnot y\) | ||
+ | \\ | ||
+ | \(f_{2}\)& | ||
+ | \(f_{0010}\)&& | ||
+ | 0 0 1 0& | ||
+ | \((x)~y~\)& | ||
+ | \(y\) without \(x\)& | ||
+ | \(\lnot x \land y\) | ||
+ | \\ | ||
+ | \(f_{3}\)& | ||
+ | \(f_{0011}\)&& | ||
+ | 0 0 1 1& | ||
+ | \((x)\)& | ||
+ | not \(x\)& | ||
+ | \(\lnot x\) | ||
+ | \\ | ||
+ | \(f_{4}\)& | ||
+ | \(f_{0100}\)&& | ||
+ | 0 1 0 0& | ||
+ | \(~x~(y)\)& | ||
+ | \(x\) without \(y\)& | ||
+ | \(x \land \lnot y\) | ||
+ | \\ | ||
+ | \(f_{5}\)& | ||
+ | \(f_{0101}\)&& | ||
+ | 0 1 0 1& | ||
+ | \((y)\)& | ||
+ | not \(y\)& | ||
+ | \(\lnot y\) | ||
+ | \\ | ||
+ | \(f_{6}\)& | ||
+ | \(f_{0110}\)&& | ||
+ | 0 1 1 0& | ||
+ | \((x,~y)\)& | ||
+ | \(x\) not equal to \(y\)& | ||
+ | \(x \ne y\) | ||
+ | \\ | ||
+ | \(f_{7}\)& | ||
+ | \(f_{0111}\)&& | ||
+ | 0 1 1 1& | ||
+ | \((x~~y)\)& | ||
+ | not both \(x\) and \(y\)& | ||
+ | \(\lnot x \lor \lnot y\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{8}\)& | ||
+ | \(f_{1000}\)&& | ||
+ | 1 0 0 0& | ||
+ | \(~x~~y~\)& | ||
+ | \(x\) and \(y\)& | ||
+ | \(x \land y\) | ||
+ | \\ | ||
+ | \(f_{9}\)& | ||
+ | \(f_{1001}\)&& | ||
+ | 1 0 0 1& | ||
+ | \(((x,~y))\)& | ||
+ | \(x\) equal to \(y\)& | ||
+ | \(x = y\) | ||
+ | \\ | ||
+ | \(f_{10}\)& | ||
+ | \(f_{1010}\)&& | ||
+ | 1 0 1 0& | ||
+ | \(y\)& | ||
+ | \(y\)& | ||
+ | \(y\) | ||
+ | \\ | ||
+ | \(f_{11}\)& | ||
+ | \(f_{1011}\)&& | ||
+ | 1 0 1 1& | ||
+ | \((~x~(y))\)& | ||
+ | not \(x\) without \(y\)& | ||
+ | \(x \Rightarrow y\) | ||
+ | \\ | ||
+ | \(f_{12}\)& | ||
+ | \(f_{1100}\)&& | ||
+ | 1 1 0 0& | ||
+ | \(x\)& | ||
+ | \(x\)& | ||
+ | \(x\) | ||
+ | \\ | ||
+ | \(f_{13}\)& | ||
+ | \(f_{1101}\)&& | ||
+ | 1 1 0 1& | ||
+ | \(((x)~y~)\)& | ||
+ | not \(y\) without \(x\)& | ||
+ | \(x \Leftarrow y\) | ||
+ | \\ | ||
+ | \(f_{14}\)& | ||
+ | \(f_{1110}\)&& | ||
+ | 1 1 1 0& | ||
+ | \(((x)(y))\)& | ||
+ | \(x\) or \(y\)& | ||
+ | \(x \lor y\) | ||
+ | \\ | ||
+ | \(f_{15}\)& | ||
+ | \(f_{1111}\)&& | ||
+ | 1 1 1 1& | ||
+ | \(((~))\)& | ||
+ | true& | ||
+ | \(1\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \end{tabular} | ||
+ | &fg=000000$ | ||
+ | </pre> | ||
+ | |||
+ | ====Table A2. Propositional Forms on Two Variables==== | ||
+ | |||
+ | <pre> | ||
+ | $latex | ||
+ | \begin{tabular}{|*{7}{c|}} | ||
+ | \multicolumn{7}{c}{Table A2. Propositional Forms on Two Variables} \\ | ||
+ | \hline | ||
+ | \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)&\(L_5\)&\(L_6\) \\ | ||
+ | \hline | ||
+ | &&\(x =\)&1 1 0 0&&& \\ | ||
+ | &&\(y =\)&1 0 1 0&&& \\ | ||
+ | \hline | ||
+ | \(f_{0}\)& | ||
+ | \(f_{0000}\)&& | ||
+ | 0 0 0 0& | ||
+ | \((~)\)& | ||
+ | false& | ||
+ | \(0\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{1}\)& | ||
+ | \(f_{0001}\)&& | ||
+ | 0 0 0 1& | ||
+ | \((x)(y)\)& | ||
+ | neither \(x\) nor \(y\)& | ||
+ | \(\lnot x \land \lnot y\) | ||
+ | \\ | ||
+ | \(f_{2}\)& | ||
+ | \(f_{0010}\)&& | ||
+ | 0 0 1 0& | ||
+ | \((x)~y~\)& | ||
+ | \(y\) without \(x\)& | ||
+ | \(\lnot x \land y\) | ||
+ | \\ | ||
+ | \(f_{4}\)& | ||
+ | \(f_{0100}\)&& | ||
+ | 0 1 0 0& | ||
+ | \(~x~(y)\)& | ||
+ | \(x\) without \(y\)& | ||
+ | \(x \land \lnot y\) | ||
+ | \\ | ||
+ | \(f_{8}\)& | ||
+ | \(f_{1000}\)&& | ||
+ | 1 0 0 0& | ||
+ | \(~x~~y~\)& | ||
+ | \(x\) and \(y\)& | ||
+ | \(x \land y\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{3}\)& | ||
+ | \(f_{0011}\)&& | ||
+ | 0 0 1 1& | ||
+ | \((x)\)& | ||
+ | not \(x\)& | ||
+ | \(\lnot x\) | ||
+ | \\ | ||
+ | \(f_{12}\)& | ||
+ | \(f_{1100}\)&& | ||
+ | 1 1 0 0& | ||
+ | \(x\)& | ||
+ | \(x\)& | ||
+ | \(x\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{6}\)& | ||
+ | \(f_{0110}\)&& | ||
+ | 0 1 1 0& | ||
+ | \((x,~y)\)& | ||
+ | \(x\) not equal to \(y\)& | ||
+ | \(x \ne y\) | ||
+ | \\ | ||
+ | \(f_{9}\)& | ||
+ | \(f_{1001}\)&& | ||
+ | 1 0 0 1& | ||
+ | \(((x,~y))\)& | ||
+ | \(x\) equal to \(y\)& | ||
+ | \(x = y\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{5}\)& | ||
+ | \(f_{0101}\)&& | ||
+ | 0 1 0 1& | ||
+ | \((y)\)& | ||
+ | not \(y\)& | ||
+ | \(\lnot y\) | ||
+ | \\ | ||
+ | \(f_{10}\)& | ||
+ | \(f_{1010}\)&& | ||
+ | 1 0 1 0& | ||
+ | \(y\)& | ||
+ | \(y\)& | ||
+ | \(y\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{7}\)& | ||
+ | \(f_{0111}\)&& | ||
+ | 0 1 1 1& | ||
+ | \((~x~~y~)\)& | ||
+ | not both \(x\) and \(y\)& | ||
+ | \(\lnot x \lor \lnot y\) | ||
+ | \\ | ||
+ | \(f_{11}\)& | ||
+ | \(f_{1011}\)&& | ||
+ | 1 0 1 1& | ||
+ | \((~x~(y))\)& | ||
+ | not \(x\) without \(y\)& | ||
+ | \(x \Rightarrow y\) | ||
+ | \\ | ||
+ | \(f_{13}\)& | ||
+ | \(f_{1101}\)&& | ||
+ | 1 1 0 1& | ||
+ | \(((x)~y~)\)& | ||
+ | not \(y\) without \(x\)& | ||
+ | \(x \Leftarrow y\) | ||
+ | \\ | ||
+ | \(f_{14}\)& | ||
+ | \(f_{1110}\)&& | ||
+ | 1 1 1 0& | ||
+ | \(((x)(y))\)& | ||
+ | \(x\) or \(y\)& | ||
+ | \(x \lor y\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{15}\)& | ||
+ | \(f_{1111}\)&& | ||
+ | 1 1 1 1& | ||
+ | \(((~))\)& | ||
+ | true& | ||
+ | \(1\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \end{tabular} | ||
+ | &fg=000000$ | ||
+ | </pre> | ||
+ | |||
+ | ====Table A3. Ef Expanded Over Differential Features {dx, dy}==== | ||
+ | |||
+ | <pre> | ||
+ | $latex | ||
+ | \begin{tabular}{|c|c||c|c|c|c|} | ||
+ | \multicolumn{6}{c}{Table A3. \(\mathrm{E}f\) Expanded Over Differential Features \(\{\mathrm{d}x, \mathrm{d}y\}\)} \\ | ||
+ | \hline | ||
+ | & | ||
+ | \(~~~~~~~~ f ~~~~~~~~\)& | ||
+ | \(~~~~\mathrm{T}_{11}f~~~~\)& | ||
+ | \(~~~~\mathrm{T}_{10}f~~~~\)& | ||
+ | \(~~~~\mathrm{T}_{01}f~~~~\)& | ||
+ | \(~~~~\mathrm{T}_{00}f~~~~\) | ||
+ | \\ | ||
+ | && | ||
+ | \(\mathrm{E}f|_{~\mathrm{d}x ~\mathrm{d}y~}~\)& | ||
+ | \(\mathrm{E}f|_{~\mathrm{d}x~(\mathrm{d}y)}~\)& | ||
+ | \(\mathrm{E}f|_{(\mathrm{d}x)~\mathrm{d}y~}~\)& | ||
+ | \(\mathrm{E}f|_{(\mathrm{d}x)(\mathrm{d}y)}~\) | ||
+ | \\ | ||
+ | \hline\hline | ||
+ | \(f_{0}\)& | ||
+ | \(0\)& | ||
+ | \(0\)& | ||
+ | \(0\)& | ||
+ | \(0\)& | ||
+ | \(0\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{1}\)& | ||
+ | \((x)(y)\)& | ||
+ | \(~x~~y~\)& | ||
+ | \(~x~(y)\)& | ||
+ | \((x)~y~\)& | ||
+ | \((x)(y)\) | ||
+ | \\ | ||
+ | \(f_{2}\)& | ||
+ | \((x)~y~\)& | ||
+ | \(~x~(y)\)& | ||
+ | \(~x~~y~\)& | ||
+ | \((x)(y)\)& | ||
+ | \((x)~y~\) | ||
+ | \\ | ||
+ | \(f_{4}\)& | ||
+ | \(~x~(y)\)& | ||
+ | \((x)~y~\)& | ||
+ | \((x)(y)\)& | ||
+ | \(~x~~y~\)& | ||
+ | \(~x~(y)\) | ||
+ | \\ | ||
+ | \(f_{8}\)& | ||
+ | \(~x~~y~\)& | ||
+ | \((x)(y)\)& | ||
+ | \((x)~y~\)& | ||
+ | \(~x~(y)\)& | ||
+ | \(~x~~y~\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{3}\)& | ||
+ | \((x)\)& | ||
+ | \( x \)& | ||
+ | \( x \)& | ||
+ | \((x)\)& | ||
+ | \((x)\) | ||
+ | \\ | ||
+ | \(f_{12}\)& | ||
+ | \( x \)& | ||
+ | \((x)\)& | ||
+ | \((x)\)& | ||
+ | \( x \)& | ||
+ | \( x \) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{6}\)& | ||
+ | \( (x,y) \)& | ||
+ | \( (x,y) \)& | ||
+ | \(((x,y))\)& | ||
+ | \(((x,y))\)& | ||
+ | \( (x,y) \) | ||
+ | \\ | ||
+ | \(f_{9}\)& | ||
+ | \(((x,y))\)& | ||
+ | \(((x,y))\)& | ||
+ | \( (x,y) \)& | ||
+ | \( (x,y) \)& | ||
+ | \(((x,y))\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{5}\)& | ||
+ | \((y)\)& | ||
+ | \( y \)& | ||
+ | \((y)\)& | ||
+ | \( y \)& | ||
+ | \((y)\) | ||
+ | \\ | ||
+ | \(f_{10}\)& | ||
+ | \( y \)& | ||
+ | \((y)\)& | ||
+ | \( y \)& | ||
+ | \((y)\)& | ||
+ | \( y \) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{7}\)& | ||
+ | \((~x~~y~)\)& | ||
+ | \(((x)(y))\)& | ||
+ | \(((x)~y~)\)& | ||
+ | \((~x~(y))\)& | ||
+ | \((~x~~y~)\) | ||
+ | \\ | ||
+ | \(f_{11}\)& | ||
+ | \((~x~(y))\)& | ||
+ | \(((x)~y~)\)& | ||
+ | \(((x)(y))\)& | ||
+ | \((~x~~y~)\)& | ||
+ | \((~x~(y))\) | ||
+ | \\ | ||
+ | \(f_{13}\)& | ||
+ | \(((x)~y~)\)& | ||
+ | \((~x~(y))\)& | ||
+ | \((~x~~y~)\)& | ||
+ | \(((x)(y))\)& | ||
+ | \(((x)~y~)\) | ||
+ | \\ | ||
+ | \(f_{14}\)& | ||
+ | \(((x)(y))\)& | ||
+ | \((~x~~y~)\)& | ||
+ | \((~x~(y))\)& | ||
+ | \(((x)~y~)\)& | ||
+ | \(((x)(y))\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{15}\)& | ||
+ | \(1\)& | ||
+ | \(1\)& | ||
+ | \(1\)& | ||
+ | \(1\)& | ||
+ | \(1\) | ||
+ | \\ | ||
+ | \hline\hline | ||
+ | \multicolumn{2}{|c||}{Fixed Point Total}& | ||
+ | 4& | ||
+ | 4& | ||
+ | 4& | ||
+ | 16 | ||
+ | \\ | ||
+ | \hline | ||
+ | \end{tabular} | ||
+ | &fg=000000$ | ||
+ | </pre> | ||
+ | |||
+ | ====Table A4. Df Expanded Over Differential Features {dx, dy}==== | ||
+ | |||
+ | <pre> | ||
+ | $latex | ||
+ | \begin{tabular}{|c|c||c|c|c|c|} | ||
+ | \multicolumn{6}{c}{Table A4. \(\mathrm{D}f\) Expanded Over Differential Features \(\{\mathrm{d}x, \mathrm{d}y\}\)} \\ | ||
+ | \hline | ||
+ | & | ||
+ | \(~~~~~~~~ f ~~~~~~~~\)& | ||
+ | \(\mathrm{D}f|_{~\mathrm{d}x\;\mathrm{d}y~}~\)& | ||
+ | \(\mathrm{D}f|_{~\mathrm{d}x~(\mathrm{d}y)}~\)& | ||
+ | \(\mathrm{D}f|_{(\mathrm{d}x)~\mathrm{d}y~}~\)& | ||
+ | \(\mathrm{D}f|_{(\mathrm{d}x)(\mathrm{d}y)}~\) | ||
+ | \\ | ||
+ | \hline\hline | ||
+ | \( f_{0} \)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \hline | ||
+ | \( f_{1} \)& | ||
+ | \( (x)(y) \)& | ||
+ | \( ((x,y)) \)& | ||
+ | \( (y) \)& | ||
+ | \( (x) \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \( f_{2} \)& | ||
+ | \( (x)~y~ \)& | ||
+ | \( (x,y) \)& | ||
+ | \( y \)& | ||
+ | \( (x) \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \( f_{4} \)& | ||
+ | \( ~x~(y) \)& | ||
+ | \( (x,y) \)& | ||
+ | \( (y) \)& | ||
+ | \( x \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \( f_{8} \)& | ||
+ | \( ~x~~y~ \)& | ||
+ | \( ((x,y)) \)& | ||
+ | \( y \)& | ||
+ | \( x \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \hline | ||
+ | \( f_{3} \)& | ||
+ | \( (x) \)& | ||
+ | \( 1 \)& | ||
+ | \( 1 \)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \( f_{12} \)& | ||
+ | \( x \)& | ||
+ | \( 1 \)& | ||
+ | \( 1 \)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \hline | ||
+ | \( f_{6} \)& | ||
+ | \( (x,y) \)& | ||
+ | \( 0 \)& | ||
+ | \( 1 \)& | ||
+ | \( 1 \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \( f_{9} \)& | ||
+ | \( ((x,y)) \)& | ||
+ | \( 0 \)& | ||
+ | \( 1 \)& | ||
+ | \( 1 \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \hline | ||
+ | \( f_{5} \)& | ||
+ | \( (y) \)& | ||
+ | \( 1 \)& | ||
+ | \( 0 \)& | ||
+ | \( 1 \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \( f_{10} \)& | ||
+ | \( y \)& | ||
+ | \( 1 \)& | ||
+ | \( 0 \)& | ||
+ | \( 1 \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \hline | ||
+ | \( f_{7} \)& | ||
+ | \( (~x~~y~) \)& | ||
+ | \( ((x,y)) \)& | ||
+ | \( y \)& | ||
+ | \( x \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \( f_{11}\) & | ||
+ | \( (~x~(y)) \)& | ||
+ | \( (x,y) \)& | ||
+ | \( (y) \)& | ||
+ | \( x \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \( f_{13}\) & | ||
+ | \( ((x)~y~) \)& | ||
+ | \( (x,y) \)& | ||
+ | \( y \)& | ||
+ | \( (x) \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \( f_{14} \)& | ||
+ | \( ((x)(y)) \)& | ||
+ | \( ((x,y)) \)& | ||
+ | \( (y) \)& | ||
+ | \( (x) \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{15}\)& | ||
+ | \( 1 \)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \hline | ||
+ | \end{tabular} | ||
+ | &fg=000000$ | ||
+ | </pre> | ||
+ | |||
+ | ====Table A5. Ef Expanded Over Ordinary Features {x, y}==== | ||
+ | |||
+ | <pre> | ||
+ | $latex | ||
+ | \begin{tabular}{|c|c||c|c|c|c|} | ||
+ | \multicolumn{6}{c}{Table A5. \(\mathrm{E}f\) Expanded Over Ordinary Features \(\{x, y\}\)} \\ | ||
+ | \hline | ||
+ | & | ||
+ | \(~~~~~~~~ f ~~~~~~~~\)& | ||
+ | \(~~\mathrm{E}f|_{ x\;y }~~~\)& | ||
+ | \(~~\mathrm{E}f|_{ x~(y)}\,~~\)& | ||
+ | \(~~\mathrm{E}f|_{(x)~y }\,~~\)& | ||
+ | \(~~\mathrm{E}f|_{(x)(y)}\;~\) | ||
+ | \\ | ||
+ | \hline\hline | ||
+ | \(f_{0}\)& | ||
+ | 0& | ||
+ | 0& | ||
+ | 0& | ||
+ | 0& | ||
+ | 0 | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{1}\)& | ||
+ | \((x)(y)\)& | ||
+ | ~d\(x\)~~d\(y~\)& | ||
+ | ~d\(x\)~(d\(y\))& | ||
+ | (d\(x\))~d\(y~\)& | ||
+ | (d\(x\))(d\(y\)) | ||
+ | \\ | ||
+ | \(f_{2}\)& | ||
+ | \((x)~y~\)& | ||
+ | ~d\(x\)~(d\(y\))& | ||
+ | ~d\(x\)~~d\(y~\)& | ||
+ | (d\(x\))(d\(y\))& | ||
+ | (d\(x\))~d\(y~\) | ||
+ | \\ | ||
+ | \(f_{4}\)& | ||
+ | \(~x~(y)\)& | ||
+ | (d\(x\))~d\(y~\)& | ||
+ | (d\(x\))(d\(y\))& | ||
+ | ~d\(x\)~~d\(y~\)& | ||
+ | ~d\(x\)~(d\(y\)) | ||
+ | \\ | ||
+ | \(f_{8}\)& | ||
+ | \(~x~~y~\)& | ||
+ | (d\(x\))(d\(y\))& | ||
+ | (d\(x\))~d\(y~\)& | ||
+ | ~d\(x\)~(d\(y\))& | ||
+ | ~d\(x\)~~d\(y~\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{3}\)& | ||
+ | \((x)\)& | ||
+ | d\(x\) & | ||
+ | d\(x\) & | ||
+ | (d\(x\))& | ||
+ | (d\(x\)) | ||
+ | \\ | ||
+ | \(f_{12}\)& | ||
+ | \( x \)& | ||
+ | (d\(x\))& | ||
+ | (d\(x\))& | ||
+ | d\(x\) & | ||
+ | d\(x\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{6}\)& | ||
+ | \( (x,y) \)& | ||
+ | (d\(x\), d\(y\)) & | ||
+ | ((d\(x\), d\(y\)))& | ||
+ | ((d\(x\), d\(y\)))& | ||
+ | (d\(x\), d\(y\)) | ||
+ | \\ | ||
+ | \(f_{9}\)& | ||
+ | \(((x,y))\)& | ||
+ | ((d\(x\), d\(y\)))& | ||
+ | (d\(x\), d\(y\)) & | ||
+ | (d\(x\), d\(y\)) & | ||
+ | ((d\(x\), d\(y\))) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{5}\)& | ||
+ | \((y)\)& | ||
+ | d\(y\) & | ||
+ | (d\(y\))& | ||
+ | d\(y\) & | ||
+ | (d\(y\)) | ||
+ | \\ | ||
+ | \(f_{10}\)& | ||
+ | \( y \)& | ||
+ | (d\(y\))& | ||
+ | d\(y\) & | ||
+ | (d\(y\))& | ||
+ | d\(y\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{7}\)& | ||
+ | \((~x~~y~)\)& | ||
+ | ((d\(x\))(d\(y\)))& | ||
+ | ((d\(x\))~d\(y\)~)& | ||
+ | (~d\(x\)~(d\(y\)))& | ||
+ | (~d\(x\)~~d\(y\)~) | ||
+ | \\ | ||
+ | \(f_{11}\)& | ||
+ | \((~x~(y))\)& | ||
+ | ((d\(x\))~d\(y\)~)& | ||
+ | ((d\(x\))(d\(y\)))& | ||
+ | (~d\(x\)~~d\(y\)~)& | ||
+ | (~d\(x\)~(d\(y\))) | ||
+ | \\ | ||
+ | \(f_{13}\)& | ||
+ | \(((x)~y~)\)& | ||
+ | (~d\(x\)~(d\(y\)))& | ||
+ | (~d\(x\)~~d\(y\)~)& | ||
+ | ((d\(x\))(d\(y\)))& | ||
+ | ((d\(x\))~d\(y\)~) | ||
+ | \\ | ||
+ | \(f_{14}\)& | ||
+ | \(((x)(y))\)& | ||
+ | (~d\(x\)~~d\(y\)~)& | ||
+ | (~d\(x\)~(d\(y\)))& | ||
+ | ((d\(x\))~d\(y\)~)& | ||
+ | ((d\(x\))(d\(y\))) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{15}\)& | ||
+ | 1& | ||
+ | 1& | ||
+ | 1& | ||
+ | 1& | ||
+ | 1 | ||
+ | \\ | ||
+ | \hline | ||
+ | \end{tabular} | ||
+ | &fg=000000$ | ||
+ | </pre> | ||
+ | |||
+ | ====Table A6. Df Expanded Over Ordinary Features {x, y}==== | ||
+ | |||
+ | <pre> | ||
+ | $latex | ||
+ | \begin{tabular}{|c|c||c|c|c|c|} | ||
+ | \multicolumn{6}{c}{Table A6. \(\mathrm{D}f\) Expanded Over Ordinary Features \(\{x, y\}\)} \\ | ||
+ | \hline | ||
+ | & | ||
+ | \(~~~~~~~~ f ~~~~~~~~\)& | ||
+ | \(~~\mathrm{D}f|_{ x\;y }~~~\)& | ||
+ | \(~~\mathrm{D}f|_{ x~(y)}\,~~\)& | ||
+ | \(~~\mathrm{D}f|_{(x)~y }\,~~\)& | ||
+ | \(~~\mathrm{D}f|_{(x)(y)}\,~\) | ||
+ | \\ | ||
+ | \hline\hline | ||
+ | \(f_{0}\)& | ||
+ | 0& | ||
+ | 0& | ||
+ | 0& | ||
+ | 0& | ||
+ | 0 | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{1}\)& | ||
+ | \((x)(y)\)& | ||
+ | ~~d\(x\)~~d\(y~~\)& | ||
+ | \;d\(x\)~(d\(y\))~& | ||
+ | ~(d\(x\))~d\(y~~\)& | ||
+ | ((d\(x\))(d\(y\))) | ||
+ | \\ | ||
+ | \(f_{2}\)& | ||
+ | \((x)~y~\)& | ||
+ | \;d\(x\)~(d\(y\))~& | ||
+ | ~~d\(x\)~~d\(y~~\)& | ||
+ | ((d\(x\))(d\(y\)))& | ||
+ | ~(d\(x\))~d\(y~~\) | ||
+ | \\ | ||
+ | \(f_{4}\)& | ||
+ | \(~x~(y)\)& | ||
+ | ~(d\(x\))~d\(y~~\)& | ||
+ | ((d\(x\))(d\(y\)))& | ||
+ | ~~d\(x\)~~d\(y~~\)& | ||
+ | ~~d\(x\)~(d\(y\))~ | ||
+ | \\ | ||
+ | \(f_{8}\)& | ||
+ | \(~x~~y~\)& | ||
+ | ((d\(x\))(d\(y\)))& | ||
+ | ~(d\(x\))~d\(y~~\)& | ||
+ | \;d\(x\)~(d\(y\))~& | ||
+ | ~~d\(x\)~~d\(y~~\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{3}\)& | ||
+ | \((x)\)& | ||
+ | d\(x\)& | ||
+ | d\(x\)& | ||
+ | d\(x\)& | ||
+ | d\(x\) | ||
+ | \\ | ||
+ | \(f_{12}\)& | ||
+ | \( x \)& | ||
+ | d\(x\)& | ||
+ | d\(x\)& | ||
+ | d\(x\)& | ||
+ | d\(x\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{6}\)& | ||
+ | \( (x,y) \)& | ||
+ | (d\(x\), d\(y\))& | ||
+ | (d\(x\), d\(y\))& | ||
+ | (d\(x\), d\(y\))& | ||
+ | (d\(x\), d\(y\)) | ||
+ | \\ | ||
+ | \(f_{9}\)& | ||
+ | \(((x,y))\)& | ||
+ | (d\(x\), d\(y\))& | ||
+ | (d\(x\), d\(y\))& | ||
+ | (d\(x\), d\(y\))& | ||
+ | (d\(x\), d\(y\)) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{5}\)& | ||
+ | \((y)\)& | ||
+ | d\(y\)& | ||
+ | d\(y\)& | ||
+ | d\(y\)& | ||
+ | d\(y\) | ||
+ | \\ | ||
+ | \(f_{10}\)& | ||
+ | \( y \)& | ||
+ | d\(y\)& | ||
+ | d\(y\)& | ||
+ | d\(y\)& | ||
+ | d\(y\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{7}\)& | ||
+ | \((~x~~y~)\)& | ||
+ | ((d\(x\))(d\(y\)))& | ||
+ | ~(d\(x\))~d\(y~~\)& | ||
+ | \;d\(x\)~(d\(y\))~& | ||
+ | ~~d\(x\)~~d\(y~~\) | ||
+ | \\ | ||
+ | \(f_{11}\)& | ||
+ | \((~x~(y))\)& | ||
+ | ~(d\(x\))~d\(y~~\)& | ||
+ | ((d\(x\))(d\(y\)))& | ||
+ | ~~d\(x\)~~d\(y~~\)& | ||
+ | ~~d\(x\)~(d\(y\))~ | ||
+ | \\ | ||
+ | \(f_{13}\)& | ||
+ | \(((x)~y~)\)& | ||
+ | \;d\(x\)~(d\(y\))~& | ||
+ | ~~d\(x\)~~d\(y~~\)& | ||
+ | ((d\(x\))(d\(y\)))& | ||
+ | ~(d\(x\))~d\(y~~\) | ||
+ | \\ | ||
+ | \(f_{14}\)& | ||
+ | \(((x)(y))\)& | ||
+ | ~~d\(x\)~~d\(y~~\)& | ||
+ | \;d\(x\)~(d\(y\))~& | ||
+ | ~(d\(x\))~d\(y~~\)& | ||
+ | ((d\(x\))(d\(y\))) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{15}\)& | ||
+ | 1& | ||
+ | 0& | ||
+ | 0& | ||
+ | 0& | ||
+ | 0 | ||
+ | \\ | ||
+ | \hline | ||
+ | \end{tabular} | ||
+ | &fg=000000$ | ||
+ | </pre> | ||
+ | |||
+ | ===Fourier Transforms of Boolean Functions=== | ||
+ | |||
+ | Re: [http://rjlipton.wordpress.com/2013/05/21/twin-primes-are-useful/ Another Problem] | ||
+ | |||
+ | <blockquote> | ||
+ | <p>The problem is concretely about Boolean functions <math>f\!</math> of <math>k\!</math> variables, and seems not to involve prime numbers at all. For any subset <math>S\!</math> of the coordinates, the corresponding Fourier coefficient is given by:</p> | ||
+ | |||
+ | <p align="center"><math>\hat{f}(S) = \frac{1}{2^k} \sum_{x \in \mathbb{Z}_2^k} f(x)\chi_S(x)\!</math></p> | ||
+ | |||
+ | <p>where <math>\chi_S(x)\!</math> is <math>-1\!</math> if <math>\textstyle \sum_{i \in S} x_i\!</math> is odd, and <math>+1\!</math> otherwise.</p> | ||
+ | </blockquote> | ||
+ | |||
+ | <math>k = 1\!</math> | ||
+ | |||
+ | … | ||
+ | |||
+ | <math>k = 2\!</math> | ||
+ | |||
+ | For ease of reading formulas, let <math>x = (x_1, x_2) = (u, v).\!</math> | ||
+ | |||
+ | ====Table 2.1. Values of χ<sub>S</sub>(x)==== | ||
+ | |||
+ | <pre> | ||
+ | $latex | ||
+ | \begin{tabular}{|c||*{4}{c}|} | ||
+ | \multicolumn{5}{c}{Table 2.1. Values of \( \boldsymbol{\chi}_\mathcal{S}(x) \) for \( f : \mathbb{B}^2 \to \mathbb{B} \)} \\[4pt] | ||
+ | \hline | ||
+ | \( \mathcal{S} \backslash (u, v) \) & | ||
+ | \( (1, 1) \) & | ||
+ | \( (1, 0) \) & | ||
+ | \( (0, 1) \) & | ||
+ | \( (0, 0) \) | ||
+ | \\ | ||
+ | \hline\hline | ||
+ | \( \varnothing \) & \( +1 \) & \( +1 \) & \( +1 \) & \( +1 \) \\ | ||
+ | \( \{ u \} \) & \( -1 \) & \( -1 \) & \( +1 \) & \( +1 \) \\ | ||
+ | \( \{ v \} \) & \( -1 \) & \( +1 \) & \( -1 \) & \( +1 \) \\ | ||
+ | \( \{ u, v \} \) & \( +1 \) & \( -1 \) & \( -1 \) & \( +1 \) \\ | ||
+ | \hline | ||
+ | \end{tabular} | ||
+ | &fg=000000$ | ||
+ | </pre> | ||
+ | |||
+ | ====Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables==== | ||
+ | |||
+ | <pre> | ||
+ | $latex | ||
+ | \begin{tabular}{|*{5}{c|}*{4}{r|}} | ||
+ | \multicolumn{9}{c}{Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables} \\[4pt] | ||
+ | \hline | ||
+ | ~&~&~&~&~&~&~&~&~\\ | ||
+ | \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)& | ||
+ | \(\hat{f}(\varnothing)\)&\(\hat{f}(\{u\})\)&\(\hat{f}(\{v\})\)&\(\hat{f}(\{u,v\})\) \\ | ||
+ | ~&~&~&~&~&~&~&~&~\\ | ||
+ | \hline | ||
+ | && \(u =\)& 1 1 0 0&&&&& \\ | ||
+ | && \(v =\)& 1 0 1 0&&&&& \\ | ||
+ | \hline | ||
+ | \(f_{0}\)& | ||
+ | \(f_{0000}\)&& | ||
+ | 0 0 0 0& | ||
+ | \((~)\)& | ||
+ | \(0\)& | ||
+ | \(0\)& | ||
+ | \(0\)& | ||
+ | \(0\) | ||
+ | \\ | ||
+ | \(f_{1}\)& | ||
+ | \(f_{0001}\)&& | ||
+ | 0 0 0 1& | ||
+ | \((u)(v)\)& | ||
+ | \(1/4\)& | ||
+ | \(1/4\)& | ||
+ | \(1/4\)& | ||
+ | \(1/4\) | ||
+ | \\ | ||
+ | \(f_{2}\)& | ||
+ | \(f_{0010}\)&& | ||
+ | 0 0 1 0& | ||
+ | \((u)~v~\)& | ||
+ | \( 1/4\)& | ||
+ | \( 1/4\)& | ||
+ | \(-1/4\)& | ||
+ | \(-1/4\) | ||
+ | \\ | ||
+ | \(f_{3}\)& | ||
+ | \(f_{0011}\)&& | ||
+ | 0 0 1 1& | ||
+ | \((u)\)& | ||
+ | \(1/2\)& | ||
+ | \(1/2\)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \(f_{4}\)& | ||
+ | \(f_{0100}\)&& | ||
+ | 0 1 0 0& | ||
+ | \(~u~(v)\)& | ||
+ | \( 1/4\)& | ||
+ | \(-1/4\)& | ||
+ | \( 1/4\)& | ||
+ | \(-1/4\) | ||
+ | \\ | ||
+ | \(f_{5}\)& | ||
+ | \(f_{0101}\)&& | ||
+ | 0 1 0 1& | ||
+ | \((v)\)& | ||
+ | \(1/2\)& | ||
+ | \( 0 \)& | ||
+ | \(1/2\)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \(f_{6}\)& | ||
+ | \(f_{0110}\)&& | ||
+ | 0 1 1 0& | ||
+ | \((u,~v)\)& | ||
+ | \( 1/2\)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \)& | ||
+ | \(-1/2\) | ||
+ | \\ | ||
+ | \(f_{7}\)& | ||
+ | \(f_{0111}\)&& | ||
+ | 0 1 1 1& | ||
+ | \((u~~v)\)& | ||
+ | \( 3/4\)& | ||
+ | \( 1/4\)& | ||
+ | \( 1/4\)& | ||
+ | \(-1/4\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{8}\)& | ||
+ | \(f_{1000}\)&& | ||
+ | 1 0 0 0& | ||
+ | \(~u~~v~\)& | ||
+ | \( 1/4\)& | ||
+ | \(-1/4\)& | ||
+ | \(-1/4\)& | ||
+ | \( 1/4\) | ||
+ | \\ | ||
+ | \(f_{9}\)& | ||
+ | \(f_{1001}\)&& | ||
+ | 1 0 0 1& | ||
+ | \(((u,~v))\)& | ||
+ | \(1/2\)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \)& | ||
+ | \(1/2\) | ||
+ | \\ | ||
+ | \(f_{10}\)& | ||
+ | \(f_{1010}\)&& | ||
+ | 1 0 1 0& | ||
+ | \(v\)& | ||
+ | \( 1/2\)& | ||
+ | \( 0 \)& | ||
+ | \(-1/2\)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \(f_{11}\)& | ||
+ | \(f_{1011}\)&& | ||
+ | 1 0 1 1& | ||
+ | \((~u~(v))\)& | ||
+ | \( 3/4\)& | ||
+ | \( 1/4\)& | ||
+ | \(-1/4\)& | ||
+ | \( 1/4\) | ||
+ | \\ | ||
+ | \(f_{12}\)& | ||
+ | \(f_{1100}\)&& | ||
+ | 1 1 0 0& | ||
+ | \(u\)& | ||
+ | \( 1/2\)& | ||
+ | \(-1/2\)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \(f_{13}\)& | ||
+ | \(f_{1101}\)&& | ||
+ | 1 1 0 1& | ||
+ | \(((u)~v~)\)& | ||
+ | \( 3/4\)& | ||
+ | \(-1/4\)& | ||
+ | \( 1/4\)& | ||
+ | \( 1/4\) | ||
+ | \\ | ||
+ | \(f_{14}\)& | ||
+ | \(f_{1110}\)&& | ||
+ | 1 1 1 0& | ||
+ | \(((u)(v))\)& | ||
+ | \( 3/4\)& | ||
+ | \(-1/4\)& | ||
+ | \(-1/4\)& | ||
+ | \(-1/4\) | ||
+ | \\ | ||
+ | \(f_{15}\)& | ||
+ | \(f_{1111}\)&& | ||
+ | 1 1 1 1& | ||
+ | \(((~))\)& | ||
+ | \(1\)& | ||
+ | \(0\)& | ||
+ | \(0\)& | ||
+ | \(0\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \end{tabular} | ||
+ | &fg=000000$ | ||
+ | </pre> | ||
+ | |||
+ | ====Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables==== | ||
+ | |||
+ | <pre> | ||
+ | $latex | ||
+ | \begin{tabular}{|*{5}{c|}*{4}{r|}} | ||
+ | \multicolumn{9}{c}{Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables} \\[4pt] | ||
+ | \hline | ||
+ | ~&~&~&~&~&~&~&~&~\\ | ||
+ | \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)& | ||
+ | \(\hat{f}(\varnothing)\)&\(\hat{f}(\{u\})\)&\(\hat{f}(\{v\})\)&\(\hat{f}(\{u,v\})\) \\ | ||
+ | ~&~&~&~&~&~&~&~&~\\ | ||
+ | \hline | ||
+ | && \(u =\)& 1 1 0 0&&&&& \\ | ||
+ | && \(v =\)& 1 0 1 0&&&&& \\ | ||
+ | \hline | ||
+ | \(f_{0}\)& | ||
+ | \(f_{0000}\)&& | ||
+ | 0 0 0 0& | ||
+ | \((~)\)& | ||
+ | \(0\)& | ||
+ | \(0\)& | ||
+ | \(0\)& | ||
+ | \(0\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{1}\)& | ||
+ | \(f_{0001}\)&& | ||
+ | 0 0 0 1& | ||
+ | \((u)(v)\)& | ||
+ | \(1/4\)& | ||
+ | \(1/4\)& | ||
+ | \(1/4\)& | ||
+ | \(1/4\) | ||
+ | \\ | ||
+ | \(f_{2}\)& | ||
+ | \(f_{0010}\)&& | ||
+ | 0 0 1 0& | ||
+ | \((u)~v~\)& | ||
+ | \( 1/4\)& | ||
+ | \( 1/4\)& | ||
+ | \(-1/4\)& | ||
+ | \(-1/4\) | ||
+ | \\ | ||
+ | \(f_{4}\)& | ||
+ | \(f_{0100}\)&& | ||
+ | 0 1 0 0& | ||
+ | \(~u~(v)\)& | ||
+ | \( 1/4\)& | ||
+ | \(-1/4\)& | ||
+ | \( 1/4\)& | ||
+ | \(-1/4\) | ||
+ | \\ | ||
+ | \(f_{8}\)& | ||
+ | \(f_{1000}\)&& | ||
+ | 1 0 0 0& | ||
+ | \(~u~~v~\)& | ||
+ | \( 1/4\)& | ||
+ | \(-1/4\)& | ||
+ | \(-1/4\)& | ||
+ | \( 1/4\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{3}\)& | ||
+ | \(f_{0011}\)&& | ||
+ | 0 0 1 1& | ||
+ | \((u)\)& | ||
+ | \(1/2\)& | ||
+ | \(1/2\)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \(f_{12}\)& | ||
+ | \(f_{1100}\)&& | ||
+ | 1 1 0 0& | ||
+ | \(u\)& | ||
+ | \( 1/2\)& | ||
+ | \(-1/2\)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{6}\)& | ||
+ | \(f_{0110}\)&& | ||
+ | 0 1 1 0& | ||
+ | \((u,~v)\)& | ||
+ | \( 1/2\)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \)& | ||
+ | \(-1/2\) | ||
+ | \\ | ||
+ | \(f_{9}\)& | ||
+ | \(f_{1001}\)&& | ||
+ | 1 0 0 1& | ||
+ | \(((u,~v))\)& | ||
+ | \(1/2\)& | ||
+ | \( 0 \)& | ||
+ | \( 0 \)& | ||
+ | \(1/2\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{5}\)& | ||
+ | \(f_{0101}\)&& | ||
+ | 0 1 0 1& | ||
+ | \((v)\)& | ||
+ | \(1/2\)& | ||
+ | \( 0 \)& | ||
+ | \(1/2\)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \(f_{10}\)& | ||
+ | \(f_{1010}\)&& | ||
+ | 1 0 1 0& | ||
+ | \(v\)& | ||
+ | \( 1/2\)& | ||
+ | \( 0 \)& | ||
+ | \(-1/2\)& | ||
+ | \( 0 \) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{7}\)& | ||
+ | \(f_{0111}\)&& | ||
+ | 0 1 1 1& | ||
+ | \((u~~v)\)& | ||
+ | \( 3/4\)& | ||
+ | \( 1/4\)& | ||
+ | \( 1/4\)& | ||
+ | \(-1/4\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{11}\)& | ||
+ | \(f_{1011}\)&& | ||
+ | 1 0 1 1& | ||
+ | \((~u~(v))\)& | ||
+ | \( 3/4\)& | ||
+ | \( 1/4\)& | ||
+ | \(-1/4\)& | ||
+ | \( 1/4\) | ||
+ | \\ | ||
+ | \(f_{13}\)& | ||
+ | \(f_{1101}\)&& | ||
+ | 1 1 0 1& | ||
+ | \(((u)~v~)\)& | ||
+ | \( 3/4\)& | ||
+ | \(-1/4\)& | ||
+ | \( 1/4\)& | ||
+ | \( 1/4\) | ||
+ | \\ | ||
+ | \(f_{14}\)& | ||
+ | \(f_{1110}\)&& | ||
+ | 1 1 1 0& | ||
+ | \(((u)(v))\)& | ||
+ | \( 3/4\)& | ||
+ | \(-1/4\)& | ||
+ | \(-1/4\)& | ||
+ | \(-1/4\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \(f_{15}\)& | ||
+ | \(f_{1111}\)&& | ||
+ | 1 1 1 1& | ||
+ | \(((~))\)& | ||
+ | \(1\)& | ||
+ | \(0\)& | ||
+ | \(0\)& | ||
+ | \(0\) | ||
+ | \\ | ||
+ | \hline | ||
+ | \end{tabular} | ||
+ | &fg=000000$ | ||
+ | </pre> | ||
+ | |||
==Work 2== | ==Work 2== | ||
− | * HTML and LaTeX markup | + | * Examples of HTML and LaTeX markup from [http://inquiryintoinquiry.com/work/work-2/ Inquiry Into Inquiry : Work 2] |
===Array Test=== | ===Array Test=== |
Latest revision as of 03:28, 5 June 2013
WordPress versions of HTML and LaTeX markup
Tables
- Examples of LaTeX tabular markup from Inquiry Into Inquiry : Tables
Boolean Functions and Propositional Calculus
Table A1. Propositional Forms on Two Variables
$latex \begin{tabular}{|*{7}{c|}} \multicolumn{7}{c}{Table A1. Propositional Forms on Two Variables} \\ \hline \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)&\(L_5\)&\(L_6\) \\ \hline &&\(x=\)&1 1 0 0&&& \\ &&\(y=\)&1 0 1 0&&& \\ \hline \(f_{0}\)& \(f_{0000}\)&& 0 0 0 0& \((~)\)& false& \(0\) \\ \(f_{1}\)& \(f_{0001}\)&& 0 0 0 1& \((x)(y)\)& neither \(x\) nor \(y\)& \(\lnot x \land \lnot y\) \\ \(f_{2}\)& \(f_{0010}\)&& 0 0 1 0& \((x)~y~\)& \(y\) without \(x\)& \(\lnot x \land y\) \\ \(f_{3}\)& \(f_{0011}\)&& 0 0 1 1& \((x)\)& not \(x\)& \(\lnot x\) \\ \(f_{4}\)& \(f_{0100}\)&& 0 1 0 0& \(~x~(y)\)& \(x\) without \(y\)& \(x \land \lnot y\) \\ \(f_{5}\)& \(f_{0101}\)&& 0 1 0 1& \((y)\)& not \(y\)& \(\lnot y\) \\ \(f_{6}\)& \(f_{0110}\)&& 0 1 1 0& \((x,~y)\)& \(x\) not equal to \(y\)& \(x \ne y\) \\ \(f_{7}\)& \(f_{0111}\)&& 0 1 1 1& \((x~~y)\)& not both \(x\) and \(y\)& \(\lnot x \lor \lnot y\) \\ \hline \(f_{8}\)& \(f_{1000}\)&& 1 0 0 0& \(~x~~y~\)& \(x\) and \(y\)& \(x \land y\) \\ \(f_{9}\)& \(f_{1001}\)&& 1 0 0 1& \(((x,~y))\)& \(x\) equal to \(y\)& \(x = y\) \\ \(f_{10}\)& \(f_{1010}\)&& 1 0 1 0& \(y\)& \(y\)& \(y\) \\ \(f_{11}\)& \(f_{1011}\)&& 1 0 1 1& \((~x~(y))\)& not \(x\) without \(y\)& \(x \Rightarrow y\) \\ \(f_{12}\)& \(f_{1100}\)&& 1 1 0 0& \(x\)& \(x\)& \(x\) \\ \(f_{13}\)& \(f_{1101}\)&& 1 1 0 1& \(((x)~y~)\)& not \(y\) without \(x\)& \(x \Leftarrow y\) \\ \(f_{14}\)& \(f_{1110}\)&& 1 1 1 0& \(((x)(y))\)& \(x\) or \(y\)& \(x \lor y\) \\ \(f_{15}\)& \(f_{1111}\)&& 1 1 1 1& \(((~))\)& true& \(1\) \\ \hline \end{tabular} &fg=000000$
Table A2. Propositional Forms on Two Variables
$latex \begin{tabular}{|*{7}{c|}} \multicolumn{7}{c}{Table A2. Propositional Forms on Two Variables} \\ \hline \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)&\(L_5\)&\(L_6\) \\ \hline &&\(x =\)&1 1 0 0&&& \\ &&\(y =\)&1 0 1 0&&& \\ \hline \(f_{0}\)& \(f_{0000}\)&& 0 0 0 0& \((~)\)& false& \(0\) \\ \hline \(f_{1}\)& \(f_{0001}\)&& 0 0 0 1& \((x)(y)\)& neither \(x\) nor \(y\)& \(\lnot x \land \lnot y\) \\ \(f_{2}\)& \(f_{0010}\)&& 0 0 1 0& \((x)~y~\)& \(y\) without \(x\)& \(\lnot x \land y\) \\ \(f_{4}\)& \(f_{0100}\)&& 0 1 0 0& \(~x~(y)\)& \(x\) without \(y\)& \(x \land \lnot y\) \\ \(f_{8}\)& \(f_{1000}\)&& 1 0 0 0& \(~x~~y~\)& \(x\) and \(y\)& \(x \land y\) \\ \hline \(f_{3}\)& \(f_{0011}\)&& 0 0 1 1& \((x)\)& not \(x\)& \(\lnot x\) \\ \(f_{12}\)& \(f_{1100}\)&& 1 1 0 0& \(x\)& \(x\)& \(x\) \\ \hline \(f_{6}\)& \(f_{0110}\)&& 0 1 1 0& \((x,~y)\)& \(x\) not equal to \(y\)& \(x \ne y\) \\ \(f_{9}\)& \(f_{1001}\)&& 1 0 0 1& \(((x,~y))\)& \(x\) equal to \(y\)& \(x = y\) \\ \hline \(f_{5}\)& \(f_{0101}\)&& 0 1 0 1& \((y)\)& not \(y\)& \(\lnot y\) \\ \(f_{10}\)& \(f_{1010}\)&& 1 0 1 0& \(y\)& \(y\)& \(y\) \\ \hline \(f_{7}\)& \(f_{0111}\)&& 0 1 1 1& \((~x~~y~)\)& not both \(x\) and \(y\)& \(\lnot x \lor \lnot y\) \\ \(f_{11}\)& \(f_{1011}\)&& 1 0 1 1& \((~x~(y))\)& not \(x\) without \(y\)& \(x \Rightarrow y\) \\ \(f_{13}\)& \(f_{1101}\)&& 1 1 0 1& \(((x)~y~)\)& not \(y\) without \(x\)& \(x \Leftarrow y\) \\ \(f_{14}\)& \(f_{1110}\)&& 1 1 1 0& \(((x)(y))\)& \(x\) or \(y\)& \(x \lor y\) \\ \hline \(f_{15}\)& \(f_{1111}\)&& 1 1 1 1& \(((~))\)& true& \(1\) \\ \hline \end{tabular} &fg=000000$
Table A3. Ef Expanded Over Differential Features {dx, dy}
$latex \begin{tabular}{|c|c||c|c|c|c|} \multicolumn{6}{c}{Table A3. \(\mathrm{E}f\) Expanded Over Differential Features \(\{\mathrm{d}x, \mathrm{d}y\}\)} \\ \hline & \(~~~~~~~~ f ~~~~~~~~\)& \(~~~~\mathrm{T}_{11}f~~~~\)& \(~~~~\mathrm{T}_{10}f~~~~\)& \(~~~~\mathrm{T}_{01}f~~~~\)& \(~~~~\mathrm{T}_{00}f~~~~\) \\ && \(\mathrm{E}f|_{~\mathrm{d}x ~\mathrm{d}y~}~\)& \(\mathrm{E}f|_{~\mathrm{d}x~(\mathrm{d}y)}~\)& \(\mathrm{E}f|_{(\mathrm{d}x)~\mathrm{d}y~}~\)& \(\mathrm{E}f|_{(\mathrm{d}x)(\mathrm{d}y)}~\) \\ \hline\hline \(f_{0}\)& \(0\)& \(0\)& \(0\)& \(0\)& \(0\) \\ \hline \(f_{1}\)& \((x)(y)\)& \(~x~~y~\)& \(~x~(y)\)& \((x)~y~\)& \((x)(y)\) \\ \(f_{2}\)& \((x)~y~\)& \(~x~(y)\)& \(~x~~y~\)& \((x)(y)\)& \((x)~y~\) \\ \(f_{4}\)& \(~x~(y)\)& \((x)~y~\)& \((x)(y)\)& \(~x~~y~\)& \(~x~(y)\) \\ \(f_{8}\)& \(~x~~y~\)& \((x)(y)\)& \((x)~y~\)& \(~x~(y)\)& \(~x~~y~\) \\ \hline \(f_{3}\)& \((x)\)& \( x \)& \( x \)& \((x)\)& \((x)\) \\ \(f_{12}\)& \( x \)& \((x)\)& \((x)\)& \( x \)& \( x \) \\ \hline \(f_{6}\)& \( (x,y) \)& \( (x,y) \)& \(((x,y))\)& \(((x,y))\)& \( (x,y) \) \\ \(f_{9}\)& \(((x,y))\)& \(((x,y))\)& \( (x,y) \)& \( (x,y) \)& \(((x,y))\) \\ \hline \(f_{5}\)& \((y)\)& \( y \)& \((y)\)& \( y \)& \((y)\) \\ \(f_{10}\)& \( y \)& \((y)\)& \( y \)& \((y)\)& \( y \) \\ \hline \(f_{7}\)& \((~x~~y~)\)& \(((x)(y))\)& \(((x)~y~)\)& \((~x~(y))\)& \((~x~~y~)\) \\ \(f_{11}\)& \((~x~(y))\)& \(((x)~y~)\)& \(((x)(y))\)& \((~x~~y~)\)& \((~x~(y))\) \\ \(f_{13}\)& \(((x)~y~)\)& \((~x~(y))\)& \((~x~~y~)\)& \(((x)(y))\)& \(((x)~y~)\) \\ \(f_{14}\)& \(((x)(y))\)& \((~x~~y~)\)& \((~x~(y))\)& \(((x)~y~)\)& \(((x)(y))\) \\ \hline \(f_{15}\)& \(1\)& \(1\)& \(1\)& \(1\)& \(1\) \\ \hline\hline \multicolumn{2}{|c||}{Fixed Point Total}& 4& 4& 4& 16 \\ \hline \end{tabular} &fg=000000$
Table A4. Df Expanded Over Differential Features {dx, dy}
$latex \begin{tabular}{|c|c||c|c|c|c|} \multicolumn{6}{c}{Table A4. \(\mathrm{D}f\) Expanded Over Differential Features \(\{\mathrm{d}x, \mathrm{d}y\}\)} \\ \hline & \(~~~~~~~~ f ~~~~~~~~\)& \(\mathrm{D}f|_{~\mathrm{d}x\;\mathrm{d}y~}~\)& \(\mathrm{D}f|_{~\mathrm{d}x~(\mathrm{d}y)}~\)& \(\mathrm{D}f|_{(\mathrm{d}x)~\mathrm{d}y~}~\)& \(\mathrm{D}f|_{(\mathrm{d}x)(\mathrm{d}y)}~\) \\ \hline\hline \( f_{0} \)& \( 0 \)& \( 0 \)& \( 0 \)& \( 0 \)& \( 0 \) \\ \hline \( f_{1} \)& \( (x)(y) \)& \( ((x,y)) \)& \( (y) \)& \( (x) \)& \( 0 \) \\ \( f_{2} \)& \( (x)~y~ \)& \( (x,y) \)& \( y \)& \( (x) \)& \( 0 \) \\ \( f_{4} \)& \( ~x~(y) \)& \( (x,y) \)& \( (y) \)& \( x \)& \( 0 \) \\ \( f_{8} \)& \( ~x~~y~ \)& \( ((x,y)) \)& \( y \)& \( x \)& \( 0 \) \\ \hline \( f_{3} \)& \( (x) \)& \( 1 \)& \( 1 \)& \( 0 \)& \( 0 \) \\ \( f_{12} \)& \( x \)& \( 1 \)& \( 1 \)& \( 0 \)& \( 0 \) \\ \hline \( f_{6} \)& \( (x,y) \)& \( 0 \)& \( 1 \)& \( 1 \)& \( 0 \) \\ \( f_{9} \)& \( ((x,y)) \)& \( 0 \)& \( 1 \)& \( 1 \)& \( 0 \) \\ \hline \( f_{5} \)& \( (y) \)& \( 1 \)& \( 0 \)& \( 1 \)& \( 0 \) \\ \( f_{10} \)& \( y \)& \( 1 \)& \( 0 \)& \( 1 \)& \( 0 \) \\ \hline \( f_{7} \)& \( (~x~~y~) \)& \( ((x,y)) \)& \( y \)& \( x \)& \( 0 \) \\ \( f_{11}\) & \( (~x~(y)) \)& \( (x,y) \)& \( (y) \)& \( x \)& \( 0 \) \\ \( f_{13}\) & \( ((x)~y~) \)& \( (x,y) \)& \( y \)& \( (x) \)& \( 0 \) \\ \( f_{14} \)& \( ((x)(y)) \)& \( ((x,y)) \)& \( (y) \)& \( (x) \)& \( 0 \) \\ \hline \(f_{15}\)& \( 1 \)& \( 0 \)& \( 0 \)& \( 0 \)& \( 0 \) \\ \hline \end{tabular} &fg=000000$
Table A5. Ef Expanded Over Ordinary Features {x, y}
$latex \begin{tabular}{|c|c||c|c|c|c|} \multicolumn{6}{c}{Table A5. \(\mathrm{E}f\) Expanded Over Ordinary Features \(\{x, y\}\)} \\ \hline & \(~~~~~~~~ f ~~~~~~~~\)& \(~~\mathrm{E}f|_{ x\;y }~~~\)& \(~~\mathrm{E}f|_{ x~(y)}\,~~\)& \(~~\mathrm{E}f|_{(x)~y }\,~~\)& \(~~\mathrm{E}f|_{(x)(y)}\;~\) \\ \hline\hline \(f_{0}\)& 0& 0& 0& 0& 0 \\ \hline \(f_{1}\)& \((x)(y)\)& ~d\(x\)~~d\(y~\)& ~d\(x\)~(d\(y\))& (d\(x\))~d\(y~\)& (d\(x\))(d\(y\)) \\ \(f_{2}\)& \((x)~y~\)& ~d\(x\)~(d\(y\))& ~d\(x\)~~d\(y~\)& (d\(x\))(d\(y\))& (d\(x\))~d\(y~\) \\ \(f_{4}\)& \(~x~(y)\)& (d\(x\))~d\(y~\)& (d\(x\))(d\(y\))& ~d\(x\)~~d\(y~\)& ~d\(x\)~(d\(y\)) \\ \(f_{8}\)& \(~x~~y~\)& (d\(x\))(d\(y\))& (d\(x\))~d\(y~\)& ~d\(x\)~(d\(y\))& ~d\(x\)~~d\(y~\) \\ \hline \(f_{3}\)& \((x)\)& d\(x\) & d\(x\) & (d\(x\))& (d\(x\)) \\ \(f_{12}\)& \( x \)& (d\(x\))& (d\(x\))& d\(x\) & d\(x\) \\ \hline \(f_{6}\)& \( (x,y) \)& (d\(x\), d\(y\)) & ((d\(x\), d\(y\)))& ((d\(x\), d\(y\)))& (d\(x\), d\(y\)) \\ \(f_{9}\)& \(((x,y))\)& ((d\(x\), d\(y\)))& (d\(x\), d\(y\)) & (d\(x\), d\(y\)) & ((d\(x\), d\(y\))) \\ \hline \(f_{5}\)& \((y)\)& d\(y\) & (d\(y\))& d\(y\) & (d\(y\)) \\ \(f_{10}\)& \( y \)& (d\(y\))& d\(y\) & (d\(y\))& d\(y\) \\ \hline \(f_{7}\)& \((~x~~y~)\)& ((d\(x\))(d\(y\)))& ((d\(x\))~d\(y\)~)& (~d\(x\)~(d\(y\)))& (~d\(x\)~~d\(y\)~) \\ \(f_{11}\)& \((~x~(y))\)& ((d\(x\))~d\(y\)~)& ((d\(x\))(d\(y\)))& (~d\(x\)~~d\(y\)~)& (~d\(x\)~(d\(y\))) \\ \(f_{13}\)& \(((x)~y~)\)& (~d\(x\)~(d\(y\)))& (~d\(x\)~~d\(y\)~)& ((d\(x\))(d\(y\)))& ((d\(x\))~d\(y\)~) \\ \(f_{14}\)& \(((x)(y))\)& (~d\(x\)~~d\(y\)~)& (~d\(x\)~(d\(y\)))& ((d\(x\))~d\(y\)~)& ((d\(x\))(d\(y\))) \\ \hline \(f_{15}\)& 1& 1& 1& 1& 1 \\ \hline \end{tabular} &fg=000000$
Table A6. Df Expanded Over Ordinary Features {x, y}
$latex \begin{tabular}{|c|c||c|c|c|c|} \multicolumn{6}{c}{Table A6. \(\mathrm{D}f\) Expanded Over Ordinary Features \(\{x, y\}\)} \\ \hline & \(~~~~~~~~ f ~~~~~~~~\)& \(~~\mathrm{D}f|_{ x\;y }~~~\)& \(~~\mathrm{D}f|_{ x~(y)}\,~~\)& \(~~\mathrm{D}f|_{(x)~y }\,~~\)& \(~~\mathrm{D}f|_{(x)(y)}\,~\) \\ \hline\hline \(f_{0}\)& 0& 0& 0& 0& 0 \\ \hline \(f_{1}\)& \((x)(y)\)& ~~d\(x\)~~d\(y~~\)& \;d\(x\)~(d\(y\))~& ~(d\(x\))~d\(y~~\)& ((d\(x\))(d\(y\))) \\ \(f_{2}\)& \((x)~y~\)& \;d\(x\)~(d\(y\))~& ~~d\(x\)~~d\(y~~\)& ((d\(x\))(d\(y\)))& ~(d\(x\))~d\(y~~\) \\ \(f_{4}\)& \(~x~(y)\)& ~(d\(x\))~d\(y~~\)& ((d\(x\))(d\(y\)))& ~~d\(x\)~~d\(y~~\)& ~~d\(x\)~(d\(y\))~ \\ \(f_{8}\)& \(~x~~y~\)& ((d\(x\))(d\(y\)))& ~(d\(x\))~d\(y~~\)& \;d\(x\)~(d\(y\))~& ~~d\(x\)~~d\(y~~\) \\ \hline \(f_{3}\)& \((x)\)& d\(x\)& d\(x\)& d\(x\)& d\(x\) \\ \(f_{12}\)& \( x \)& d\(x\)& d\(x\)& d\(x\)& d\(x\) \\ \hline \(f_{6}\)& \( (x,y) \)& (d\(x\), d\(y\))& (d\(x\), d\(y\))& (d\(x\), d\(y\))& (d\(x\), d\(y\)) \\ \(f_{9}\)& \(((x,y))\)& (d\(x\), d\(y\))& (d\(x\), d\(y\))& (d\(x\), d\(y\))& (d\(x\), d\(y\)) \\ \hline \(f_{5}\)& \((y)\)& d\(y\)& d\(y\)& d\(y\)& d\(y\) \\ \(f_{10}\)& \( y \)& d\(y\)& d\(y\)& d\(y\)& d\(y\) \\ \hline \(f_{7}\)& \((~x~~y~)\)& ((d\(x\))(d\(y\)))& ~(d\(x\))~d\(y~~\)& \;d\(x\)~(d\(y\))~& ~~d\(x\)~~d\(y~~\) \\ \(f_{11}\)& \((~x~(y))\)& ~(d\(x\))~d\(y~~\)& ((d\(x\))(d\(y\)))& ~~d\(x\)~~d\(y~~\)& ~~d\(x\)~(d\(y\))~ \\ \(f_{13}\)& \(((x)~y~)\)& \;d\(x\)~(d\(y\))~& ~~d\(x\)~~d\(y~~\)& ((d\(x\))(d\(y\)))& ~(d\(x\))~d\(y~~\) \\ \(f_{14}\)& \(((x)(y))\)& ~~d\(x\)~~d\(y~~\)& \;d\(x\)~(d\(y\))~& ~(d\(x\))~d\(y~~\)& ((d\(x\))(d\(y\))) \\ \hline \(f_{15}\)& 1& 0& 0& 0& 0 \\ \hline \end{tabular} &fg=000000$
Fourier Transforms of Boolean Functions
Re: Another Problem
The problem is concretely about Boolean functions \(f\!\) of \(k\!\) variables, and seems not to involve prime numbers at all. For any subset \(S\!\) of the coordinates, the corresponding Fourier coefficient is given by:
\(\hat{f}(S) = \frac{1}{2^k} \sum_{x \in \mathbb{Z}_2^k} f(x)\chi_S(x)\!\)
where \(\chi_S(x)\!\) is \(-1\!\) if \(\textstyle \sum_{i \in S} x_i\!\) is odd, and \(+1\!\) otherwise.
\(k = 1\!\)
…
\(k = 2\!\)
For ease of reading formulas, let \(x = (x_1, x_2) = (u, v).\!\)
Table 2.1. Values of χS(x)
$latex \begin{tabular}{|c||*{4}{c}|} \multicolumn{5}{c}{Table 2.1. Values of \( \boldsymbol{\chi}_\mathcal{S}(x) \) for \( f : \mathbb{B}^2 \to \mathbb{B} \)} \\[4pt] \hline \( \mathcal{S} \backslash (u, v) \) & \( (1, 1) \) & \( (1, 0) \) & \( (0, 1) \) & \( (0, 0) \) \\ \hline\hline \( \varnothing \) & \( +1 \) & \( +1 \) & \( +1 \) & \( +1 \) \\ \( \{ u \} \) & \( -1 \) & \( -1 \) & \( +1 \) & \( +1 \) \\ \( \{ v \} \) & \( -1 \) & \( +1 \) & \( -1 \) & \( +1 \) \\ \( \{ u, v \} \) & \( +1 \) & \( -1 \) & \( -1 \) & \( +1 \) \\ \hline \end{tabular} &fg=000000$
Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables
$latex \begin{tabular}{|*{5}{c|}*{4}{r|}} \multicolumn{9}{c}{Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables} \\[4pt] \hline ~&~&~&~&~&~&~&~&~\\ \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)& \(\hat{f}(\varnothing)\)&\(\hat{f}(\{u\})\)&\(\hat{f}(\{v\})\)&\(\hat{f}(\{u,v\})\) \\ ~&~&~&~&~&~&~&~&~\\ \hline && \(u =\)& 1 1 0 0&&&&& \\ && \(v =\)& 1 0 1 0&&&&& \\ \hline \(f_{0}\)& \(f_{0000}\)&& 0 0 0 0& \((~)\)& \(0\)& \(0\)& \(0\)& \(0\) \\ \(f_{1}\)& \(f_{0001}\)&& 0 0 0 1& \((u)(v)\)& \(1/4\)& \(1/4\)& \(1/4\)& \(1/4\) \\ \(f_{2}\)& \(f_{0010}\)&& 0 0 1 0& \((u)~v~\)& \( 1/4\)& \( 1/4\)& \(-1/4\)& \(-1/4\) \\ \(f_{3}\)& \(f_{0011}\)&& 0 0 1 1& \((u)\)& \(1/2\)& \(1/2\)& \( 0 \)& \( 0 \) \\ \(f_{4}\)& \(f_{0100}\)&& 0 1 0 0& \(~u~(v)\)& \( 1/4\)& \(-1/4\)& \( 1/4\)& \(-1/4\) \\ \(f_{5}\)& \(f_{0101}\)&& 0 1 0 1& \((v)\)& \(1/2\)& \( 0 \)& \(1/2\)& \( 0 \) \\ \(f_{6}\)& \(f_{0110}\)&& 0 1 1 0& \((u,~v)\)& \( 1/2\)& \( 0 \)& \( 0 \)& \(-1/2\) \\ \(f_{7}\)& \(f_{0111}\)&& 0 1 1 1& \((u~~v)\)& \( 3/4\)& \( 1/4\)& \( 1/4\)& \(-1/4\) \\ \hline \(f_{8}\)& \(f_{1000}\)&& 1 0 0 0& \(~u~~v~\)& \( 1/4\)& \(-1/4\)& \(-1/4\)& \( 1/4\) \\ \(f_{9}\)& \(f_{1001}\)&& 1 0 0 1& \(((u,~v))\)& \(1/2\)& \( 0 \)& \( 0 \)& \(1/2\) \\ \(f_{10}\)& \(f_{1010}\)&& 1 0 1 0& \(v\)& \( 1/2\)& \( 0 \)& \(-1/2\)& \( 0 \) \\ \(f_{11}\)& \(f_{1011}\)&& 1 0 1 1& \((~u~(v))\)& \( 3/4\)& \( 1/4\)& \(-1/4\)& \( 1/4\) \\ \(f_{12}\)& \(f_{1100}\)&& 1 1 0 0& \(u\)& \( 1/2\)& \(-1/2\)& \( 0 \)& \( 0 \) \\ \(f_{13}\)& \(f_{1101}\)&& 1 1 0 1& \(((u)~v~)\)& \( 3/4\)& \(-1/4\)& \( 1/4\)& \( 1/4\) \\ \(f_{14}\)& \(f_{1110}\)&& 1 1 1 0& \(((u)(v))\)& \( 3/4\)& \(-1/4\)& \(-1/4\)& \(-1/4\) \\ \(f_{15}\)& \(f_{1111}\)&& 1 1 1 1& \(((~))\)& \(1\)& \(0\)& \(0\)& \(0\) \\ \hline \end{tabular} &fg=000000$
Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables
$latex \begin{tabular}{|*{5}{c|}*{4}{r|}} \multicolumn{9}{c}{Table 2.3. Fourier Coefficients of Boolean Functions on Two Variables} \\[4pt] \hline ~&~&~&~&~&~&~&~&~\\ \(L_1\)&\(L_2\)&&\(L_3\)&\(L_4\)& \(\hat{f}(\varnothing)\)&\(\hat{f}(\{u\})\)&\(\hat{f}(\{v\})\)&\(\hat{f}(\{u,v\})\) \\ ~&~&~&~&~&~&~&~&~\\ \hline && \(u =\)& 1 1 0 0&&&&& \\ && \(v =\)& 1 0 1 0&&&&& \\ \hline \(f_{0}\)& \(f_{0000}\)&& 0 0 0 0& \((~)\)& \(0\)& \(0\)& \(0\)& \(0\) \\ \hline \(f_{1}\)& \(f_{0001}\)&& 0 0 0 1& \((u)(v)\)& \(1/4\)& \(1/4\)& \(1/4\)& \(1/4\) \\ \(f_{2}\)& \(f_{0010}\)&& 0 0 1 0& \((u)~v~\)& \( 1/4\)& \( 1/4\)& \(-1/4\)& \(-1/4\) \\ \(f_{4}\)& \(f_{0100}\)&& 0 1 0 0& \(~u~(v)\)& \( 1/4\)& \(-1/4\)& \( 1/4\)& \(-1/4\) \\ \(f_{8}\)& \(f_{1000}\)&& 1 0 0 0& \(~u~~v~\)& \( 1/4\)& \(-1/4\)& \(-1/4\)& \( 1/4\) \\ \hline \(f_{3}\)& \(f_{0011}\)&& 0 0 1 1& \((u)\)& \(1/2\)& \(1/2\)& \( 0 \)& \( 0 \) \\ \(f_{12}\)& \(f_{1100}\)&& 1 1 0 0& \(u\)& \( 1/2\)& \(-1/2\)& \( 0 \)& \( 0 \) \\ \hline \(f_{6}\)& \(f_{0110}\)&& 0 1 1 0& \((u,~v)\)& \( 1/2\)& \( 0 \)& \( 0 \)& \(-1/2\) \\ \(f_{9}\)& \(f_{1001}\)&& 1 0 0 1& \(((u,~v))\)& \(1/2\)& \( 0 \)& \( 0 \)& \(1/2\) \\ \hline \(f_{5}\)& \(f_{0101}\)&& 0 1 0 1& \((v)\)& \(1/2\)& \( 0 \)& \(1/2\)& \( 0 \) \\ \(f_{10}\)& \(f_{1010}\)&& 1 0 1 0& \(v\)& \( 1/2\)& \( 0 \)& \(-1/2\)& \( 0 \) \\ \hline \(f_{7}\)& \(f_{0111}\)&& 0 1 1 1& \((u~~v)\)& \( 3/4\)& \( 1/4\)& \( 1/4\)& \(-1/4\) \\ \hline \(f_{11}\)& \(f_{1011}\)&& 1 0 1 1& \((~u~(v))\)& \( 3/4\)& \( 1/4\)& \(-1/4\)& \( 1/4\) \\ \(f_{13}\)& \(f_{1101}\)&& 1 1 0 1& \(((u)~v~)\)& \( 3/4\)& \(-1/4\)& \( 1/4\)& \( 1/4\) \\ \(f_{14}\)& \(f_{1110}\)&& 1 1 1 0& \(((u)(v))\)& \( 3/4\)& \(-1/4\)& \(-1/4\)& \(-1/4\) \\ \hline \(f_{15}\)& \(f_{1111}\)&& 1 1 1 1& \(((~))\)& \(1\)& \(0\)& \(0\)& \(0\) \\ \hline \end{tabular} &fg=000000$
Work 2
- Examples of HTML and LaTeX markup from Inquiry Into Inquiry : Work 2
Array Test
$latex |x| = \left\{ \begin{array}{ll} x & \text{if \( x \geq 0 \)}; \\ -x & \text{if \( x < 0 \)}. \end{array} \right. &fg=000000$
$latex |x| = \left\{ \begin{array}{ll} x & \text{if}~ x \geq 0; \\ -x & \text{if}~ x < 0. \end{array} \right. &fg=000000$
$latex \begin{array}{*{9}{l}} Alpha & Bravo & Charlie & Delta & Echo & Foxtrot & Golf & Hotel & India \\ Juliet & Kilo & Lima & Mike & November & Oscar & Papa & Quebec & Romeo \\ Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing \end{array}&fg=000000$
Matrix Test
$latex \begin{matrix} Alpha & Bravo & Charlie & Delta & Echo & Foxtrot & Golf & Hotel & India \\ Juliet & Kilo & Lima & Mike & November & Oscar & Papa & Quebec & Romeo \\ Sierra & Tango & Uniform & Victor & Whiskey & X\text{-}ray & Yankee & Zulu & \varnothing \end{matrix}&fg=000000$
Tabular Test 1
$latex \begin{tabular}{lll} Chicago & U.S.A. & 1893 \\ Z\"{u}rich & Switzerland & 1897 \\ Paris & France & 1900 \\ Heidelberg & Germany & 1904 \\ Rome & Italy & 1908 \end{tabular}&fg=000000$
Tabular Test 2
$latex \begin{tabular}{|r|r|} \hline \( n \) & \( n! \) \\ \hline 1 & 1 \\ 2 & 2 \\ 3 & 6 \\ 4 & 24 \\ 5 & 120 \\ 6 & 720 \\ 7 & 5040 \\ 8 & 40320 \\ 9 & 362880 \\ 10 & 3628800 \\ \hline \end{tabular}&fg=000000$
Tabular Test 3
$latex \begin{tabular}{|c|c|*{16}{c}|} \multicolumn{18}{c}{Table 1. Higher Order Propositions \( (n = 1) \)} \\[4pt] \hline \( f \) & \( f \) & \( m_{0} \) & \( m_{1} \) & \( m_{2} \) & \( m_{3} \) & \( m_{4} \) & \( m_{5} \) & \( m_{6} \) & \( m_{7} \) & \( m_{8} \) & \( m_{9} \) & \( m_{10} \) & \( m_{11} \) & \( m_{12} \) & \( m_{13} \) & \( m_{14} \) & \( m_{15} \) \\[4pt] \hline \( f_0 \) & \texttt{()} & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\[4pt] \( f_1 \) & \texttt{(}\( x \)\texttt{)} & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\[4pt] \( f_2 \) & \( x \) & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\[4pt] \( f_3 \) & \texttt{(())} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\[4pt] \hline \end{tabular}&fg=000000$
Tabular Test 4
$latex \begin{tabular}{|*{7}{c|}} \multicolumn{7}{c}{\textbf{Table A1. Propositional Forms on Two Variables}} \\ \hline \( L_1 \) & \( L_2 \) && \( L_3 \) & \( L_4 \) & \( L_5 \) & \( L_6 \) \\ \hline & & \( x = \) & 1 1 0 0 & & & \\ & & \( y = \) & 1 0 1 0 & & & \\ \hline \( f_{0} \) & \( f_{0000} \) && 0 0 0 0 & \( (~) \) & false & \( 0 \) \\ \( f_{1} \) & \( f_{0001} \) && 0 0 0 1 & \( (x)(y) \) & neither \( x \) nor \( y \) & \( \lnot x \land \lnot y \) \\ \( f_{2} \) & \( f_{0010} \) && 0 0 1 0 & \( (x)\ y \) & \( y \) without \( x \) & \( \lnot x \land y \) \\ \( f_{3} \) & \( f_{0011} \) && 0 0 1 1 & \( (x) \) & not \( x \) & \( \lnot x \) \\ \( f_{4} \) & \( f_{0100} \) && 0 1 0 0 & \( x\ (y) \) & \( x \) without \( y \) & \( x \land \lnot y \) \\ \( f_{5} \) & \( f_{0101} \) && 0 1 0 1 & \( (y) \) & not \( y \) & \( \lnot y \) \\ \( f_{6} \) & \( f_{0110} \) && 0 1 1 0 & \( (x,\ y) \) & \( x \) not equal to \( y \) & \( x \ne y \) \\ \( f_{7} \) & \( f_{0111} \) && 0 1 1 1 & \( (x\ y) \) & not both \( x \) and \( y \) & \( \lnot x \lor \lnot y \) \\ \hline \( f_{8} \) & \( f_{1000} \) && 1 0 0 0 & \( x\ y \) & \( x \) and \( y \) & \( x \land y \) \\ \( f_{9} \) & \( f_{1001} \) && 1 0 0 1 & \( ((x,\ y)) \) & \( x \) equal to \( y \) & \( x = y \) \\ \( f_{10} \) & \( f_{1010} \) && 1 0 1 0 & \( y \) & \( y \) & \( y \) \\ \( f_{11} \) & \( f_{1011} \) && 1 0 1 1 & \( (x\ (y)) \) & not \( x \) without \( y \) & \( x \Rightarrow y \) \\ \( f_{12} \) & \( f_{1100} \) && 1 1 0 0 & \( x \) & \( x \) & \( x \) \\ \( f_{13} \) & \( f_{1101} \) && 1 1 0 1 & \( ((x)\ y) \) & not \( y \) without \( x \) & \( x \Leftarrow y \) \\ \( f_{14} \) & \( f_{1110} \) && 1 1 1 0 & \( ((x)(y)) \) & \( x \) or \( y \) & \( x \lor y \) \\ \( f_{15} \) & \( f_{1111} \) && 1 1 1 1 & \( ((~)) \) & true & \( 1 \) \\ \hline \end{tabular}&fg=000000$
Table Test 1
<table border="0" style="border-width:0;width:100%;"> <tr> <td style="border-top:1px solid white;width:35%;"></td> <td style="border-top:1px solid white;width:65%;"> Can we ever become what we weren’t in eternity? Can we ever learn what we weren’t born knowing? Can we ever share what we never had in common?</td> </tr> </table>
Table Test 2
<table align="left" border="0" style="border-width:0;"> <tr> <td style="border-top:1px solid white;"> <p>Everything considered, a determined soul will always manage.</p></td> <td style="border-top:1px solid white;">(41)</td> </tr> <tr> <td style="border-top:1px solid white;"> <p>To a man devoid of blinders, there is no finer sight than that of the intelligence at grips with a reality that transcends it.</p></td> <td style="border-top:1px solid white;">(55)</td> </tr> </table>
Table Test 3
<table align="center" border="0"> <tr> <td> <br> <p>Everything considered, a determined soul will always manage.</p></td> <td><p>(41)</p></td> </tr> <tr> <td> <br> <p>To a man devoid of blinders, there is no finer sight than that of the intelligence at grips with a reality that transcends it.</p></td> <td><p>(55)</p></td> </tr> </table>
Table Test 4
<table align="center" border="0" style="border-width:0;text-align:center;"> <tr> <td style="border-top:1px solid white;"> <a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" title="Logical Graph Figure 1"> <img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" alt="()()=()" width="500" height="168" border="0"></a></td> <td style="border-top:1px solid white;">(1)</td> </tr> <tr> <td style="border-top:1px solid white;"> <a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" title="Logical Graph Figure 2"> <img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" alt="(())= " width="500" height="168" border="0"></a></td> <td style="border-top:1px solid white;">(2)</td> </tr> </table>
Table Test 5
<table align="center" border="0" style="text-align:center;"> <tr> <td style="padding:10px;"> <a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" title="Logical Graph Figure 1"> <img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure1visibleframe1.jpg" alt="()()=()" align="center" width="500" height="168" /></a></td> <td style="padding:80px 10px;">(1)</td> </tr> <tr> <td style="padding:10px;"> <a href="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" title="Logical Graph Figure 2"> <img src="http://inquiryintoinquiry.files.wordpress.com/2008/09/logicalgraphfigure2visibleframe1.jpg" alt="(())= " align="center" width="500" height="168" /></a></td> <td style="padding:80px 10px;">(2)</td> </tr> </table>
Table Test 6
<table align="center" border="0" style="text-align:center;"> <caption><font size="+2">$latex \text{Table 1.} ~~ \text{Higher Order Propositions} ~ (n = 1) $</font></caption> <tr> <td style="border-bottom:2px solid black;">$latex m_{0} $</td> <td style="border-bottom:2px solid black;">$latex m_{1} $</td> <td style="border-bottom:2px solid black;">$latex m_{2} $</td> <td style="border-bottom:2px solid black;">$latex m_{3} $</td> <td style="border-bottom:2px solid black;">$latex m_{4} $</td> <td style="border-bottom:2px solid black;">$latex m_{5} $</td> <td style="border-bottom:2px solid black;">$latex m_{6} $</td> <td style="border-bottom:2px solid black;">$latex m_{7} $</td> </tr> <tr> <td style="background:white;color:black;">0</td> <td style="background:black;color:white;">1</td> <td style="background:white;color:black;">0</td> <td style="background:black;color:white;">1</td> <td style="background:white;color:black;">0</td> <td style="background:black;color:white;">1</td> <td style="background:white;color:black;">0</td> <td style="background:black;color:white;">1</td> </tr> <tr> <td style="background:white;color:black;">0</td> <td style="background:white;color:black;">0</td> <td style="background:black;color:white;">1</td> <td style="background:black;color:white;">1</td> <td style="background:white;color:black;">0</td> <td style="background:white;color:black;">0</td> <td style="background:black;color:white;">1</td> <td style="background:black;color:white;">1</td> </tr> <tr> <td style="background:white;color:black;">0</td> <td style="background:white;color:black;">0</td> <td style="background:white;color:black;">0</td> <td style="background:white;color:black;">0</td> <td style="background:black;color:white;">1</td> <td style="background:black;color:white;">1</td> <td style="background:black;color:white;">1</td> <td style="background:black;color:white;">1</td> </tr> <tr> <td style="background:white;color:black;">0</td> <td style="background:white;color:black;">0</td> <td style="background:white;color:black;">0</td> <td style="background:white;color:black;">0</td> <td style="background:white;color:black;">0</td> <td style="background:white;color:black;">0</td> <td style="background:white;color:black;">0</td> <td style="background:white;color:black;">0</td> </tr> </table>