Difference between revisions of "User:Jon Awbrey/SANDBOX"

MyWikiBiz, Author Your Legacy — Friday August 15, 2025
Jump to navigationJump to search
 
(One intermediate revision by the same user not shown)
Line 22: Line 22:
  
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
|+ '''Table 3.  Relational Composition'''
+
|+ <math>\text{Table 3.  Relational Composition}\!</math>
 
|-
 
|-
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
Line 65: Line 65:
 
<br>
 
<br>
  
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:70%"
+
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:75%"
|+ '''Table 9.  Composite of Triadic and Dyadic Relations'''
+
|+ <math>\text{Table 9.  Composite of Triadic and Dyadic Relations}\!</math>
 
|-
 
|-
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | &nbsp;
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | &nbsp;
Line 114: Line 114:
  
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
|+ '''Table 13.  Another Brand of Composition'''
+
|+ <math>\text{Table 13.  Another Brand of Composition}\!</math>
 
|-
 
|-
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
Line 158: Line 158:
  
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
|+ '''Table 15.  Conjunction Via Composition'''
+
|+ <math>\text{Table 15.  Conjunction Via Composition}\!</math>
 
|-
 
|-
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
Line 202: Line 202:
  
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
|+ '''Table 18.  Relational Composition P o Q'''
+
|+ <math>\text{Table 18.  Relational Composition}~ P \circ Q</math>
 
|-
 
|-
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
Line 243: Line 243:
 
<br>
 
<br>
  
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:70%"
+
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 
|+ <math>\text{Table 20.  Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math>
 
|+ <math>\text{Table 20.  Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math>
 
|-
 
|-
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | &nbsp;
+
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
| style="border-bottom:1px solid black; width:20%" | <math>J\!</math>
+
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
| style="border-bottom:1px solid black; width:20%" | <math>J\!</math>
+
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
| style="border-bottom:1px solid black; width:20%" | <math>J\!</math>
+
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
 
|-
 
|-
 
| style="border-right:1px solid black" | <math>K\!</math>
 
| style="border-right:1px solid black" | <math>K\!</math>

Latest revision as of 13:50, 24 April 2009

Logic of Relatives


Table 3.  Relational Composition
o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o
|    L    #    X    |    Y    |         |
o---------o---------o---------o---------o
|    M    #         |    Y    |    Z    |
o---------o---------o---------o---------o
|  L o M  #    X    |         |    Z    |
o---------o---------o---------o---------o


  \mathit{1}\! \mathit{1}\! \mathit{1}\!
L\! X\! Y\!  
M\!   Y\! Z\!
L \circ M X\!   Z\!


Table 9.  Composite of Triadic and Dyadic Relations
o---------o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o=========o
|    G    #    T    |    U    |         |    V    |
o---------o---------o---------o---------o---------o
|    L    #         |    U    |    W    |         |
o---------o---------o---------o---------o---------o
|  G o L  #    T    |         |    W    |    V    |
o---------o---------o---------o---------o---------o


\text{Table 9. Composite of Triadic and Dyadic Relations}\!
  \mathit{1}\! \mathit{1}\! \mathit{1}\! \mathit{1}\!
G\! T\! U\!   V\!
L\!   U\! W\!  
G \circ L T\!   W\! V\!


Table 13.  Another Brand of Composition
o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o
|    G    #    X    |    Y    |    Z    |
o---------o---------o---------o---------o
|    T    #         |    Y    |    Z    |
o---------o---------o---------o---------o
|  G o T  #    X    |         |    Z    |
o---------o---------o---------o---------o


\text{Table 13. Another Brand of Composition}\!
  \mathit{1}\! \mathit{1}\! \mathit{1}\!
G\! X\! Y\! Z\!
T\!   Y\! Z\!
G \circ T X\!   Z\!


Table 15.  Conjunction Via Composition
o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o
|    L,   #    X    |    X    |    Y    |
o---------o---------o---------o---------o
|    S    #         |    X    |    Y    |
o---------o---------o---------o---------o
|  L , S  #    X    |         |    Y    |
o---------o---------o---------o---------o


\text{Table 15. Conjunction Via Composition}\!
  \mathit{1}\! \mathit{1}\! \mathit{1}\!
L,\! X\! X\! Y\!
S\!   X\! Y\!
L,\!S X\!   Y\!


Table 18.  Relational Composition P o Q
o---------o---------o---------o---------o
|         #   !1!   |   !1!   |   !1!   |
o=========o=========o=========o=========o
|    P    #    X    |    Y    |         |
o---------o---------o---------o---------o
|    Q    #         |    Y    |    Z    |
o---------o---------o---------o---------o
|  P o Q  #    X    |         |    Z    |
o---------o---------o---------o---------o


\text{Table 18. Relational Composition}~ P \circ Q
  \mathit{1}\! \mathit{1}\! \mathit{1}\!
P\! X\! Y\!  
Q\!   Y\! Z\!
P \circ Q X\!   Z\!


Table 20.  Arrow:  J(L(u, v)) = K(Ju, Jv)
o---------o---------o---------o---------o
|         #    J    |    J    |    J    |
o=========o=========o=========o=========o
|    K    #    X    |    X    |    X    |
o---------o---------o---------o---------o
|    L    #    Y    |    Y    |    Y    |
o---------o---------o---------o---------o


\text{Table 20. Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)
  J\! J\! J\!
K\! X\! X\! X\!
L\! Y\! Y\! Y\!


Grammar Stuff


Table 13. Algorithmic Translation Rules
\text{Sentence in PARCE}\! \xrightarrow{\operatorname{Parse}} \text{Graph in PARC}\!
\operatorname{Conc}^0 \xrightarrow{\operatorname{Parse}} \operatorname{Node}^0
\operatorname{Conc}_{j=1}^k s_j \xrightarrow{\operatorname{Parse}} \operatorname{Node}_{j=1}^k \operatorname{Parse} (s_j)
\operatorname{Surc}^0 \xrightarrow{\operatorname{Parse}} \operatorname{Lobe}^0
\operatorname{Surc}_{j=1}^k s_j \xrightarrow{\operatorname{Parse}} \operatorname{Lobe}_{j=1}^k \operatorname{Parse} (s_j)


Table 14.1 Semantic Translation : Functional Form
\operatorname{Sentence} \xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Parse}} \operatorname{Graph} \xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Denotation}} \operatorname{Proposition}
s_j\! \xrightarrow{\operatorname{~~~~~~~~~~}} C_j\! \xrightarrow{\operatorname{~~~~~~~~~~}} q_j\!
\operatorname{Conc}^0 \xrightarrow{\operatorname{~~~~~~~~~~}} \operatorname{Node}^0 \xrightarrow{\operatorname{~~~~~~~~~~}} \underline{1}
\operatorname{Conc}^k_j s_j \xrightarrow{\operatorname{~~~~~~~~~~}} \operatorname{Node}^k_j C_j \xrightarrow{\operatorname{~~~~~~~~~~}} \operatorname{Conj}^k_j q_j
\operatorname{Surc}^0 \xrightarrow{\operatorname{~~~~~~~~~~}} \operatorname{Lobe}^0 \xrightarrow{\operatorname{~~~~~~~~~~}} \underline{0}
\operatorname{Surc}^k_j s_j \xrightarrow{\operatorname{~~~~~~~~~~}} \operatorname{Lobe}^k_j C_j \xrightarrow{\operatorname{~~~~~~~~~~}} \operatorname{Surj}^k_j q_j


Table 14.2 Semantic Translation : Equational Form
\downharpoonleft \operatorname{Sentence} \downharpoonright \stackrel{\operatorname{Parse}}{=} \downharpoonleft \operatorname{Graph} \downharpoonright \stackrel{\operatorname{Denotation}}{=} \operatorname{Proposition}
\downharpoonleft s_j \downharpoonright =\! \downharpoonleft C_j \downharpoonright =\! q_j\!
\downharpoonleft \operatorname{Conc}^0 \downharpoonright =\! \downharpoonleft \operatorname{Node}^0 \downharpoonright =\! \underline{1}
\downharpoonleft \operatorname{Conc}^k_j s_j \downharpoonright =\! \downharpoonleft \operatorname{Node}^k_j C_j \downharpoonright =\! \operatorname{Conj}^k_j q_j
\downharpoonleft \operatorname{Surc}^0 \downharpoonright =\! \downharpoonleft \operatorname{Lobe}^0 \downharpoonright =\! \underline{0}
\downharpoonleft \operatorname{Surc}^k_j s_j \downharpoonright =\! \downharpoonleft \operatorname{Lobe}^k_j C_j \downharpoonright =\! \operatorname{Surj}^k_j q_j


Table Stuff


Table 15. Boolean Functions on Zero Variables
F\! F\! F()\! F\!
\underline{0} F_0^{(0)}\! \underline{0} (~)
\underline{1} F_1^{(0)}\! \underline{1} ((~))


Table 16. Boolean Functions on One Variable
F\! F\! F(x)\! F\!
    F(\underline{1}) F(\underline{0})  
F_0^{(1)}\! F_{00}^{(1)}\! \underline{0} \underline{0} (~)
F_1^{(1)}\! F_{01}^{(1)}\! \underline{0} \underline{1} (x)\!
F_2^{(1)}\! F_{10}^{(1)}\! \underline{1} \underline{0} x\!
F_3^{(1)}\! F_{11}^{(1)}\! \underline{1} \underline{1} ((~))


Table 17. Boolean Functions on Two Variables
F\! F\! F(x, y)\! F\!
    F(\underline{1}, \underline{1}) F(\underline{1}, \underline{0}) F(\underline{0}, \underline{1}) F(\underline{0}, \underline{0})  
F_{0}^{(2)}\! F_{0000}^{(2)}\! \underline{0} \underline{0} \underline{0} \underline{0} (~)
F_{1}^{(2)}\! F_{0001}^{(2)}\! \underline{0} \underline{0} \underline{0} \underline{1} (x)(y)\!
F_{2}^{(2)}\! F_{0010}^{(2)}\! \underline{0} \underline{0} \underline{1} \underline{0} (x) y\!
F_{3}^{(2)}\! F_{0011}^{(2)}\! \underline{0} \underline{0} \underline{1} \underline{1} (x)\!
F_{4}^{(2)}\! F_{0100}^{(2)}\! \underline{0} \underline{1} \underline{0} \underline{0} x (y)\!
F_{5}^{(2)}\! F_{0101}^{(2)}\! \underline{0} \underline{1} \underline{0} \underline{1} (y)\!
F_{6}^{(2)}\! F_{0110}^{(2)}\! \underline{0} \underline{1} \underline{1} \underline{0} (x, y)\!
F_{7}^{(2)}\! F_{0111}^{(2)}\! \underline{0} \underline{1} \underline{1} \underline{1} (x y)\!
F_{8}^{(2)}\! F_{1000}^{(2)}\! \underline{1} \underline{0} \underline{0} \underline{0} x y\!
F_{9}^{(2)}\! F_{1001}^{(2)}\! \underline{1} \underline{0} \underline{0} \underline{1} ((x, y))\!
F_{10}^{(2)}\! F_{1010}^{(2)}\! \underline{1} \underline{0} \underline{1} \underline{0} y\!
F_{11}^{(2)}\! F_{1011}^{(2)}\! \underline{1} \underline{0} \underline{1} \underline{1} (x (y))\!
F_{12}^{(2)}\! F_{1100}^{(2)}\! \underline{1} \underline{1} \underline{0} \underline{0} x\!
F_{13}^{(2)}\! F_{1101}^{(2)}\! \underline{1} \underline{1} \underline{0} \underline{1} ((x)y)\!
F_{14}^{(2)}\! F_{1110}^{(2)}\! \underline{1} \underline{1} \underline{1} \underline{0} ((x)(y))\!
F_{15}^{(2)}\! F_{1111}^{(2)}\! \underline{1} \underline{1} \underline{1} \underline{1} ((~))




fixy
u =
v =
1 1 0 0
1 0 1 0
= u
= v
fjuv
x =
y =
1 1 1 0
1 0 0 1
= f‹u, v›
= g‹u, v›


A
u =
v =
1 1 0 0
1 0 1 0
= u
= v
B
x =
y =
1 1 1 0
1 0 0 1
= f‹u, v›
= g‹u, v›


u =
v =
1 1 0 0
1 0 1 0
= u
= v
x =
y =
1 1 1 0
1 0 0 1
= f‹u, v›
= g‹u, v›


u =
v =
x =
y =
1 1 0 0
1 0 1 0
1 1 1 0
1 0 0 1
= u
= v
= f‹u, v›
= g‹u, v›