Difference between revisions of "User:Jon Awbrey/MNO"
Jon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) (tweak a bit to raise back to consciousness ...) |
||
(17 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
==Truth Tables== | ==Truth Tables== | ||
+ | |||
+ | ===New Version=== | ||
<br> | <br> | ||
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
− | |+ <math>\text{Table | + | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math> |
|- style="background:#f0f0ff" | |- style="background:#f0f0ff" | ||
− | | | + | | <math>\mathcal{L}_1</math> |
− | + | | <math>\mathcal{L}_2</math> | |
− | + | | <math>\mathcal{L}_3</math> | |
− | | | + | | <math>\mathcal{L}_4</math> |
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- style="background:#f0f0ff" | |- style="background:#f0f0ff" | ||
| | | | ||
| align="right" | <math>p\colon\!</math> | | align="right" | <math>p\colon\!</math> | ||
− | | <math>1~1~0~0 | + | | <math>1~1~1~1~0~0~0~0</math> |
− | |||
− | |||
| | | | ||
|- style="background:#f0f0ff" | |- style="background:#f0f0ff" | ||
| | | | ||
| align="right" | <math>q\colon\!</math> | | align="right" | <math>q\colon\!</math> | ||
− | | <math>1~0~1~0 | + | | <math>1~1~0~0~1~1~0~0</math> |
| | | | ||
+ | |- style="background:#f0f0ff" | ||
| | | | ||
+ | | align="right" | <math>r\colon\!</math> | ||
+ | | <math>1~0~1~0~1~0~1~0</math> | ||
| | | | ||
|- | |- | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_{104} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{148} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{146} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{97} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{134} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{73} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{41} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{22} | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | f_{ | + | f_{01101000} |
\\[4pt] | \\[4pt] | ||
− | f_{ | + | f_{10010100} |
\\[4pt] | \\[4pt] | ||
− | f_{ | + | f_{10010010} |
\\[4pt] | \\[4pt] | ||
− | f_{ | + | f_{01100001} |
\\[4pt] | \\[4pt] | ||
− | f_{ | + | f_{10000110} |
\\[4pt] | \\[4pt] | ||
− | f_{ | + | f_{01001001} |
\\[4pt] | \\[4pt] | ||
− | f_{ | + | f_{00101001} |
\\[4pt] | \\[4pt] | ||
− | f_{ | + | f_{00010110} |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | 0~0~0~0 | + | 0~1~1~0~1~0~0~0 |
\\[4pt] | \\[4pt] | ||
− | 0~0~0~1 | + | 1~0~0~1~0~1~0~0 |
\\[4pt] | \\[4pt] | ||
− | 0~0~1~0 | + | 1~0~0~1~0~0~1~0 |
\\[4pt] | \\[4pt] | ||
− | 0~0~ | + | 0~1~1~0~0~0~0~1 |
\\[4pt] | \\[4pt] | ||
− | 0~1~ | + | 1~0~0~0~0~1~1~0 |
\\[4pt] | \\[4pt] | ||
− | 0~1~0~1 | + | 0~1~0~0~1~0~0~1 |
\\[4pt] | \\[4pt] | ||
− | 0~1~1~0 | + | 0~0~1~0~1~0~0~1 |
\\[4pt] | \\[4pt] | ||
− | 0~1~1~1 | + | 0~0~0~1~0~1~1~0 |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | (~) | + | \texttt{(~p~,~q~,~r~)} |
\\[4pt] | \\[4pt] | ||
− | (p) | + | \texttt{(~p~,~q~,(r))} |
\\[4pt] | \\[4pt] | ||
− | (p)~ | + | \texttt{(~p~,(q),~r~)} |
\\[4pt] | \\[4pt] | ||
− | (p) | + | \texttt{(~p~,(q),(r))} |
\\[4pt] | \\[4pt] | ||
− | + | \texttt{((p),~q~,~r~)} | |
\\[4pt] | \\[4pt] | ||
− | ~~ | + | \texttt{((p),~q~,(r))} |
\\[4pt] | \\[4pt] | ||
− | (p,~ | + | \texttt{((p),(q),~r~)} |
\\[4pt] | \\[4pt] | ||
− | (p | + | \texttt{((p),(q),(r))} |
\end{matrix}</math> | \end{matrix}</math> | ||
+ | |- | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_{233} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{214} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{182} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{121} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{158} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{109} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{107} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{151} | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | f_{11101001} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{11010110} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{10110110} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{01111001} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{10011110} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{01101101} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{01101011} | |
\\[4pt] | \\[4pt] | ||
− | + | f_{10010111} | |
\end{matrix}</math> | \end{matrix}</math> | ||
− | |||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | 1~1~1~0~1~0~0~1 | |
\\[4pt] | \\[4pt] | ||
− | + | 1~1~0~1~0~1~1~0 | |
\\[4pt] | \\[4pt] | ||
− | + | 1~0~1~1~0~1~1~0 | |
\\[4pt] | \\[4pt] | ||
− | + | 0~1~1~1~1~0~0~1 | |
\\[4pt] | \\[4pt] | ||
− | + | 1~0~0~1~1~1~1~0 | |
\\[4pt] | \\[4pt] | ||
− | + | 0~1~1~0~1~1~0~1 | |
\\[4pt] | \\[4pt] | ||
− | + | 0~1~1~0~1~0~1~1 | |
\\[4pt] | \\[4pt] | ||
− | + | 1~0~0~1~0~1~1~1 | |
\end{matrix}</math> | \end{matrix}</math> | ||
| | | | ||
<math>\begin{matrix} | <math>\begin{matrix} | ||
− | + | \texttt{(((p),(q),(r)))} | |
\\[4pt] | \\[4pt] | ||
− | + | \texttt{(((p),(q),~r~))} | |
\\[4pt] | \\[4pt] | ||
− | + | \texttt{(((p),~q~,(r)))} | |
\\[4pt] | \\[4pt] | ||
− | + | \texttt{(((p),~q~,~r~))} | |
\\[4pt] | \\[4pt] | ||
− | + | \texttt{((~p~,(q),(r)))} | |
\\[4pt] | \\[4pt] | ||
− | + | \texttt{((~p~,(q),~r~))} | |
\\[4pt] | \\[4pt] | ||
− | + | \texttt{((~p~,~q~,(r)))} | |
\\[4pt] | \\[4pt] | ||
− | + | \texttt{((~p~,~q~,~r~))} | |
\end{matrix}</math> | \end{matrix}</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ===Old Version=== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f0f0ff; font-weight:bold; text-align:center; width:90%" | ||
+ | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math> | ||
+ | | width="25%" | <math>\mathcal{L}_1</math> | ||
+ | | width="25%" | <math>\mathcal{L}_2</math> | ||
+ | | width="25%" | <math>\mathcal{L}_3</math> | ||
+ | | width="25%" | <math>\mathcal{L}_4</math> | ||
+ | |- | ||
+ | | | ||
+ | | align="right" | <math>p =\!</math> | ||
+ | | 1 1 1 1 0 0 0 0 | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | | align="right" | <math>q =\!</math> | ||
+ | | 1 1 0 0 1 1 0 0 | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | | align="right" | <math>r =\!</math> | ||
+ | | 1 0 1 0 1 0 1 0 | ||
+ | | | ||
+ | |} | ||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" | ||
+ | |- | ||
+ | | width="25%" | <math>f_{104}\!</math> | ||
+ | | width="25%" | <math>f_{01101000}\!</math> | ||
+ | | width="25%" | 0 1 1 0 1 0 0 0 | ||
+ | | width="25%" | <math>( p , q , r )\!</math> | ||
+ | |- | ||
+ | | <math>f_{148}\!</math> | ||
+ | | <math>f_{10010100}\!</math> | ||
+ | | 1 0 0 1 0 1 0 0 | ||
+ | | <math>( p , q , (r))\!</math> | ||
+ | |- | ||
+ | | <math>f_{146}\!</math> | ||
+ | | <math>f_{10010010}\!</math> | ||
+ | | 1 0 0 1 0 0 1 0 | ||
+ | | <math>( p , (q), r )\!</math> | ||
+ | |- | ||
+ | | <math>f_{97}\!</math> | ||
+ | | <math>f_{01100001}\!</math> | ||
+ | | 0 1 1 0 0 0 0 1 | ||
+ | | <math>( p , (q), (r))\!</math> | ||
+ | |- | ||
+ | | <math>f_{134}\!</math> | ||
+ | | <math>f_{10000110}\!</math> | ||
+ | | 1 0 0 0 0 1 1 0 | ||
+ | | <math>((p), q , r )\!</math> | ||
+ | |- | ||
+ | | <math>f_{73}\!</math> | ||
+ | | <math>f_{01001001}\!</math> | ||
+ | | 0 1 0 0 1 0 0 1 | ||
+ | | <math>((p), q , (r))\!</math> | ||
+ | |- | ||
+ | | <math>f_{41}\!</math> | ||
+ | | <math>f_{00101001}\!</math> | ||
+ | | 0 0 1 0 1 0 0 1 | ||
+ | | <math>((p), (q), r )\!</math> | ||
+ | |- | ||
+ | | <math>f_{22}\!</math> | ||
+ | | <math>f_{00010110}\!</math> | ||
+ | | 0 0 0 1 0 1 1 0 | ||
+ | | <math>((p), (q), (r))\!</math> | ||
+ | |} | ||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" | ||
+ | |- | ||
+ | | width="25%" | <math>f_{233}\!</math> | ||
+ | | width="25%" | <math>f_{11101001}\!</math> | ||
+ | | width="25%" | 1 1 1 0 1 0 0 1 | ||
+ | | width="25%" | <math>(((p), (q), (r)))\!</math> | ||
+ | |- | ||
+ | | <math>f_{214}\!</math> | ||
+ | | <math>f_{11010110}\!</math> | ||
+ | | 1 1 0 1 0 1 1 0 | ||
+ | | <math>(((p), (q), r ))\!</math> | ||
+ | |- | ||
+ | | <math>f_{182}\!</math> | ||
+ | | <math>f_{10110110}\!</math> | ||
+ | | 1 0 1 1 0 1 1 0 | ||
+ | | <math>(((p), q , (r)))\!</math> | ||
+ | |- | ||
+ | | <math>f_{121}\!</math> | ||
+ | | <math>f_{01111001}\!</math> | ||
+ | | 0 1 1 1 1 0 0 1 | ||
+ | | <math>(((p), q , r ))\!</math> | ||
+ | |- | ||
+ | | <math>f_{158}\!</math> | ||
+ | | <math>f_{10011110}\!</math> | ||
+ | | 1 0 0 1 1 1 1 0 | ||
+ | | <math>(( p , (q), (r)))\!</math> | ||
+ | |- | ||
+ | | <math>f_{109}\!</math> | ||
+ | | <math>f_{01101101}\!</math> | ||
+ | | 0 1 1 0 1 1 0 1 | ||
+ | | <math>(( p , (q), r ))\!</math> | ||
+ | |- | ||
+ | | <math>f_{107}\!</math> | ||
+ | | <math>f_{01101011}\!</math> | ||
+ | | 0 1 1 0 1 0 1 1 | ||
+ | | <math>(( p , q , (r)))\!</math> | ||
+ | |- | ||
+ | | <math>f_{151}\!</math> | ||
+ | | <math>f_{10010111}\!</math> | ||
+ | | 1 0 0 1 0 1 1 1 | ||
+ | | <math>(( p , q , r ))\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ==Venn Diagrams== | ||
+ | |||
+ | ===New Version=== | ||
+ | |||
+ | {| align="center" cellpadding="10" style="text-align:center" | ||
| | | | ||
− | < | + | <p>[[Image:Venn Diagram (P,Q,R).jpg|500px]]</p> |
− | + | <p><math>\text{Figure 2.}~~\texttt{(p, q, r)}</math> | |
− | + | |} | |
− | + | ||
− | + | {| align="center" cellpadding="10" style="text-align:center" | |
− | |||
− | |||
− | |||
− | \ | ||
− | |||
− | |||
− | |||
− | \ | ||
− | |||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | <p>[[Image:Venn Diagram ((P),(Q),(R)).jpg|500px]]</p> |
− | + | <p><math>\text{Figure 3.}~~\texttt{((p),(q),(r))}</math> | |
− | + | |} | |
− | (( | + | |
− | + | ===Old Version=== | |
− | + | ||
− | + | {| align="center" cellpadding="10" style="text-align:center" | |
− | |||
− | |||
− | |||
− | \ | ||
− | |||
− | \ | ||
− | ((p)(q) | ||
− | |||
− | |||
− | |||
| | | | ||
− | < | + | <p>[[Image:Minimal Negation Operator 1.jpg|500px]]</p> |
− | + | <p><math>\text{Figure 2.} ~~ \texttt{(} p \texttt{,} q \texttt{,} r \texttt{)}</math> | |
− | + | |} | |
− | + | ||
− | + | {| align="center" cellpadding="10" style="text-align:center" | |
− | |||
− | |||
− | |||
− | |||
− | p | ||
− | |||
− | \text{ | ||
− | \ | ||
− | |||
− | \ | ||
− | |||
− | \ | ||
| | | | ||
− | < | + | <p>[[Image:Minimal Negation Operator 2.jpg|500px]]</p> |
− | + | <p><math>\text{Figure 3.} ~~ \texttt{((} p \texttt{),(} q \texttt{),(} r \texttt{))}</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | p | ||
− | |||
− | p | ||
− | \\ | ||
− | p \ | ||
− | |||
− | |||
− | \\ | ||
− | |||
− | |||
|} | |} | ||
− | + | * | |
− | |||
− |
Latest revision as of 16:10, 28 August 2017
Logical Graphs
Truth Tables
New Version
\(\mathcal{L}_1\) | \(\mathcal{L}_2\) | \(\mathcal{L}_3\) | \(\mathcal{L}_4\) |
\(p\colon\!\) | \(1~1~1~1~0~0~0~0\) | ||
\(q\colon\!\) | \(1~1~0~0~1~1~0~0\) | ||
\(r\colon\!\) | \(1~0~1~0~1~0~1~0\) | ||
\(\begin{matrix} f_{104} \\[4pt] f_{148} \\[4pt] f_{146} \\[4pt] f_{97} \\[4pt] f_{134} \\[4pt] f_{73} \\[4pt] f_{41} \\[4pt] f_{22} \end{matrix}\) |
\(\begin{matrix} f_{01101000} \\[4pt] f_{10010100} \\[4pt] f_{10010010} \\[4pt] f_{01100001} \\[4pt] f_{10000110} \\[4pt] f_{01001001} \\[4pt] f_{00101001} \\[4pt] f_{00010110} \end{matrix}\) |
\(\begin{matrix} 0~1~1~0~1~0~0~0 \\[4pt] 1~0~0~1~0~1~0~0 \\[4pt] 1~0~0~1~0~0~1~0 \\[4pt] 0~1~1~0~0~0~0~1 \\[4pt] 1~0~0~0~0~1~1~0 \\[4pt] 0~1~0~0~1~0~0~1 \\[4pt] 0~0~1~0~1~0~0~1 \\[4pt] 0~0~0~1~0~1~1~0 \end{matrix}\) |
\(\begin{matrix} \texttt{(~p~,~q~,~r~)} \\[4pt] \texttt{(~p~,~q~,(r))} \\[4pt] \texttt{(~p~,(q),~r~)} \\[4pt] \texttt{(~p~,(q),(r))} \\[4pt] \texttt{((p),~q~,~r~)} \\[4pt] \texttt{((p),~q~,(r))} \\[4pt] \texttt{((p),(q),~r~)} \\[4pt] \texttt{((p),(q),(r))} \end{matrix}\) |
\(\begin{matrix} f_{233} \\[4pt] f_{214} \\[4pt] f_{182} \\[4pt] f_{121} \\[4pt] f_{158} \\[4pt] f_{109} \\[4pt] f_{107} \\[4pt] f_{151} \end{matrix}\) |
\(\begin{matrix} f_{11101001} \\[4pt] f_{11010110} \\[4pt] f_{10110110} \\[4pt] f_{01111001} \\[4pt] f_{10011110} \\[4pt] f_{01101101} \\[4pt] f_{01101011} \\[4pt] f_{10010111} \end{matrix}\) |
\(\begin{matrix} 1~1~1~0~1~0~0~1 \\[4pt] 1~1~0~1~0~1~1~0 \\[4pt] 1~0~1~1~0~1~1~0 \\[4pt] 0~1~1~1~1~0~0~1 \\[4pt] 1~0~0~1~1~1~1~0 \\[4pt] 0~1~1~0~1~1~0~1 \\[4pt] 0~1~1~0~1~0~1~1 \\[4pt] 1~0~0~1~0~1~1~1 \end{matrix}\) |
\(\begin{matrix} \texttt{(((p),(q),(r)))} \\[4pt] \texttt{(((p),(q),~r~))} \\[4pt] \texttt{(((p),~q~,(r)))} \\[4pt] \texttt{(((p),~q~,~r~))} \\[4pt] \texttt{((~p~,(q),(r)))} \\[4pt] \texttt{((~p~,(q),~r~))} \\[4pt] \texttt{((~p~,~q~,(r)))} \\[4pt] \texttt{((~p~,~q~,~r~))} \end{matrix}\) |
Old Version
\(\mathcal{L}_1\) | \(\mathcal{L}_2\) | \(\mathcal{L}_3\) | \(\mathcal{L}_4\) |
\(p =\!\) | 1 1 1 1 0 0 0 0 | ||
\(q =\!\) | 1 1 0 0 1 1 0 0 | ||
\(r =\!\) | 1 0 1 0 1 0 1 0 |
\(f_{104}\!\) | \(f_{01101000}\!\) | 0 1 1 0 1 0 0 0 | \(( p , q , r )\!\) |
\(f_{148}\!\) | \(f_{10010100}\!\) | 1 0 0 1 0 1 0 0 | \(( p , q , (r))\!\) |
\(f_{146}\!\) | \(f_{10010010}\!\) | 1 0 0 1 0 0 1 0 | \(( p , (q), r )\!\) |
\(f_{97}\!\) | \(f_{01100001}\!\) | 0 1 1 0 0 0 0 1 | \(( p , (q), (r))\!\) |
\(f_{134}\!\) | \(f_{10000110}\!\) | 1 0 0 0 0 1 1 0 | \(((p), q , r )\!\) |
\(f_{73}\!\) | \(f_{01001001}\!\) | 0 1 0 0 1 0 0 1 | \(((p), q , (r))\!\) |
\(f_{41}\!\) | \(f_{00101001}\!\) | 0 0 1 0 1 0 0 1 | \(((p), (q), r )\!\) |
\(f_{22}\!\) | \(f_{00010110}\!\) | 0 0 0 1 0 1 1 0 | \(((p), (q), (r))\!\) |
\(f_{233}\!\) | \(f_{11101001}\!\) | 1 1 1 0 1 0 0 1 | \((((p), (q), (r)))\!\) |
\(f_{214}\!\) | \(f_{11010110}\!\) | 1 1 0 1 0 1 1 0 | \((((p), (q), r ))\!\) |
\(f_{182}\!\) | \(f_{10110110}\!\) | 1 0 1 1 0 1 1 0 | \((((p), q , (r)))\!\) |
\(f_{121}\!\) | \(f_{01111001}\!\) | 0 1 1 1 1 0 0 1 | \((((p), q , r ))\!\) |
\(f_{158}\!\) | \(f_{10011110}\!\) | 1 0 0 1 1 1 1 0 | \((( p , (q), (r)))\!\) |
\(f_{109}\!\) | \(f_{01101101}\!\) | 0 1 1 0 1 1 0 1 | \((( p , (q), r ))\!\) |
\(f_{107}\!\) | \(f_{01101011}\!\) | 0 1 1 0 1 0 1 1 | \((( p , q , (r)))\!\) |
\(f_{151}\!\) | \(f_{10010111}\!\) | 1 0 0 1 0 1 1 1 | \((( p , q , r ))\!\) |
Venn Diagrams
New Version
\(\text{Figure 2.}~~\texttt{(p, q, r)}\) |
\(\text{Figure 3.}~~\texttt{((p),(q),(r))}\) |
Old Version
\(\text{Figure 2.} ~~ \texttt{(} p \texttt{,} q \texttt{,} r \texttt{)}\) |
\(\text{Figure 3.} ~~ \texttt{((} p \texttt{),(} q \texttt{),(} r \texttt{))}\) |