Difference between revisions of "Logical matrix"

MyWikiBiz, Author Your Legacy — Friday November 29, 2024
Jump to navigationJump to search
(<font size="3">☞</font> This page belongs to resource collections on Logic and Inquiry.)
(→‎Document history: del xs www's)
Line 64: Line 64:
 
{{col-break}}
 
{{col-break}}
 
* [http://mywikibiz.com/Logical_matrix Logical Matrix], [http://mywikibiz.com/ MyWikiBiz]
 
* [http://mywikibiz.com/Logical_matrix Logical Matrix], [http://mywikibiz.com/ MyWikiBiz]
* [http://beta.wikiversity.org/wiki/Logical_matrix Logical Matrix], [http://beta.wikiversity.org/ Beta Wikiversity]
 
 
* [http://planetmath.org/encyclopedia/LogicalMatrix.html Logical Matrix], [http://planetmath.org/ PlanetMath]
 
* [http://planetmath.org/encyclopedia/LogicalMatrix.html Logical Matrix], [http://planetmath.org/ PlanetMath]
 +
* [http://beta.wikiversity.org/wiki/Logical_matrix Logical Matrix], [http://beta.wikiversity.org/ Wikiversity Beta]
 
{{col-break}}
 
{{col-break}}
* [http://www.wikinfo.org/index.php/Logical_matrix Logical Matrix], [http://www.wikinfo.org/ Wikinfo]
+
* [http://wikinfo.org/index.php/Logical_matrix Logical Matrix], [http://wikinfo.org/ Wikinfo]
* [http://www.textop.org/wiki/index.php?title=Logical_matrix Logical Matrix], [http://www.textop.org/wiki/ Textop Wiki]
+
* [http://textop.org/wiki/index.php?title=Logical_matrix Logical Matrix], [http://textop.org/wiki/ Textop Wiki]
 
* [http://en.wikipedia.org/w/index.php?title=Logical_matrix&oldid=43606082 Logical Matrix], [http://en.wikipedia.org/ Wikipedia]
 
* [http://en.wikipedia.org/w/index.php?title=Logical_matrix&oldid=43606082 Logical Matrix], [http://en.wikipedia.org/ Wikipedia]
 
{{col-end}}
 
{{col-end}}
Line 74: Line 74:
 
<br><sharethis />
 
<br><sharethis />
  
 +
[[Category:Inquiry]]
 +
[[Category:Open Educational Resource]]
 +
[[Category:Peer Educational Resource]]
 
[[Category:Combinatorics]]
 
[[Category:Combinatorics]]
 
[[Category:Computer Science]]
 
[[Category:Computer Science]]

Revision as of 14:44, 18 May 2010

This page belongs to resource collections on Logic and Inquiry.

A logical matrix, in the finite dimensional case, is a k-dimensional array with entries from the boolean domain B = {0, 1}. Such a matrix affords a matrix representation of a k-adic relation.

Syllabus

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Relational concepts

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.

Template:Col-breakTemplate:Col-breakTemplate:Col-end
<sharethis />