Difference between revisions of "Boolean-valued function"

MyWikiBiz, Author Your Legacy — Tuesday November 05, 2024
Jump to navigationJump to search
(add [examples])
(standardize syllabus & add document history)
Line 23: Line 23:
 
* [[Marvin L. Minsky|Minsky, Marvin L.]], and [[Seymour A. Papert|Papert, Seymour, A.]] (1988), ''[[Perceptrons]], An Introduction to Computational Geometry'', MIT Press, Cambridge, MA, 1969.  Revised, 1972.  Expanded edition, 1988.
 
* [[Marvin L. Minsky|Minsky, Marvin L.]], and [[Seymour A. Papert|Papert, Seymour, A.]] (1988), ''[[Perceptrons]], An Introduction to Computational Geometry'', MIT Press, Cambridge, MA, 1969.  Revised, 1972.  Expanded edition, 1988.
  
==See also==
+
==Syllabus==
{|
+
 
| valign=top |
+
===Logical operators===
* [[Boolean algebra]]
+
 
 +
{{col-begin}}
 +
{{col-break}}
 +
* [[Exclusive disjunction]]
 +
* [[Logical conjunction]]
 +
* [[Logical disjunction]]
 +
* [[Logical equality]]
 +
{{col-break}}
 +
* [[Logical implication]]
 +
* [[Logical NAND]]
 +
* [[Logical NNOR]]
 +
* [[Logical negation|Negation]]
 +
{{col-end}}
 +
 
 +
===Related topics===
 +
 
 +
{{col-begin}}
 +
{{col-break}}
 +
* [[Ampheck]]
 
* [[Boolean domain]]
 
* [[Boolean domain]]
* [[Boolean logic]]
+
* [[Boolean function]]
| valign=top |
+
* [[Boolean-valued function]]
 +
{{col-break}}
 +
* [[Logical graph]]
 +
* [[Logical matrix]]
 +
* [[Minimal negation operator]]
 +
* [[Peirce's law]]
 +
{{col-break}}
 
* [[Propositional calculus]]
 
* [[Propositional calculus]]
 
* [[Truth table]]
 
* [[Truth table]]
 +
* [[Universe of discourse]]
 
* [[Zeroth order logic]]
 
* [[Zeroth order logic]]
|}
+
{{col-end}}
  
===Equivalent concepts===
+
==Document history==
  
* [[Characteristic function]]
+
Portions of the above article were adapted from the following sources under the [[GNU Free Documentation License]], under other applicable licenses, or by permission of the copyright holders.
* [[Indicator function]]
 
* [[Predicate]], in some senses.
 
* [[Proposition]], in some senses.
 
  
===Related concepts===
+
{{col-begin}}
 
+
{{col-break}}
* [[Boolean function]]
+
* [http://mywikibiz.com/Boolean-valued_function Boolean-Valued Function], [http://mywikibiz.com/ MyWikiBiz]
 +
* [http://beta.wikiversity.org/wiki/Boolean-valued_function Boolean-Valued Function], [http://beta.wikiversity.org/ Beta Wikiversity]
 +
* [http://planetmath.org/encyclopedia/BooleanValuedFunction.html Boolean-Valued Function], [http://planetmath.org/ PlanetMath]
 +
{{col-break}}
 +
* [http://www.wikinfo.org/index.php/Boolean-valued_function Boolean-Valued Function], [http://www.wikinfo.org/ Wikinfo]
 +
* [http://www.textop.org/wiki/index.php?title=Boolean-valued_function Boolean-Valued Function], [http://www.textop.org/wiki/ Textop Wiki]
 +
* [http://en.wikipedia.org/w/index.php?title=Boolean-valued_function&oldid=67166584 Boolean-Valued Function], [http://en.wikipedia.org/ Wikipedia]
 +
{{col-end}}
  
{{aficionados}}<sharethis />
+
<br><sharethis />
  
 
[[Category:Combinatorics]]
 
[[Category:Combinatorics]]

Revision as of 01:45, 7 April 2010

A boolean-valued function is a function of the type \(f : X \to \mathbb{B},\) where \(X\!\) is an arbitrary set and where \(\mathbb{B}\) is a boolean domain.

In the formal sciencesmathematics, mathematical logic, statistics — and their applied disciplines, a boolean-valued function may also be referred to as a characteristic function, indicator function, predicate, or proposition. In all of these uses it is understood that the various terms refer to a mathematical object and not the corresponding semiotic sign or syntactic expression.

In formal semantic theories of truth, a truth predicate is a predicate on the sentences of a formal language, interpreted for logic, that formalizes the intuitive concept that is normally expressed by saying that a sentence is true. A truth predicate may have additional domains beyond the formal language domain, if that is what is required to determine a final truth value.

Examples

A binary sequence is a boolean-valued function \(f : \mathbb{N}^+ \to \mathbb{B}\), where \(\mathbb{N}^+ = \{ 1, 2, 3, \ldots \},\). In other words, \(f\!\) is an infinite sequence of 0's and 1's.

A binary sequence of length \(k\!\) is a boolean-valued function \(f : [k] \to \mathbb{B}\), where \([k] = \{ 1, 2, \ldots k \}.\)

References

  • Brown, Frank Markham (2003), Boolean Reasoning: The Logic of Boolean Equations, 1st edition, Kluwer Academic Publishers, Norwell, MA. 2nd edition, Dover Publications, Mineola, NY, 2003.
  • Kohavi, Zvi (1978), Switching and Finite Automata Theory, 1st edition, McGraw–Hill, 1970. 2nd edition, McGraw–Hill, 1978.
  • Mathematical Society of Japan, Encyclopedic Dictionary of Mathematics, 2nd edition, 2 vols., Kiyosi Itô (ed.), MIT Press, Cambridge, MA, 1993. Cited as EDM.

Syllabus

Logical operators

Template:Col-breakTemplate:Col-breakTemplate:Col-end

Related topics

Template:Col-breakTemplate:Col-breakTemplate:Col-breakTemplate:Col-end

Document history

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.

Template:Col-breakTemplate:Col-breakTemplate:Col-end
<sharethis />