Difference between revisions of "User:Jon Awbrey/SANDBOX"
MyWikiBiz, Author Your Legacy — Friday August 15, 2025
Jump to navigationJump to searchJon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) |
||
Line 22: | Line 22: | ||
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
− | |+ | + | |+ <math>\text{Table 3. Relational Composition}\!</math> |
|- | |- | ||
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
Line 65: | Line 65: | ||
<br> | <br> | ||
− | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width: | + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:75%" |
− | |+ | + | |+ <math>\text{Table 9. Composite of Triadic and Dyadic Relations}\!</math> |
|- | |- | ||
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | | | style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | | ||
Line 114: | Line 114: | ||
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
− | |+ | + | |+ <math>\text{Table 13. Another Brand of Composition}\!</math> |
|- | |- | ||
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
Line 158: | Line 158: | ||
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
− | |+ | + | |+ <math>\text{Table 15. Conjunction Via Composition}\!</math> |
|- | |- | ||
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
Line 202: | Line 202: | ||
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" | ||
− | |+ | + | |+ <math>\text{Table 18. Relational Composition}~ P \circ Q</math> |
|- | |- | ||
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | | style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | | ||
Line 243: | Line 243: | ||
<br> | <br> | ||
− | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width: | + | {| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%" |
|+ <math>\text{Table 20. Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math> | |+ <math>\text{Table 20. Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math> | ||
|- | |- |
Revision as of 13:34, 24 April 2009
Logic of Relatives
Table 3. Relational Composition o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | L # X | Y | | o---------o---------o---------o---------o | M # | Y | Z | o---------o---------o---------o---------o | L o M # X | | Z | o---------o---------o---------o---------o |
\mathit{1}\! | \mathit{1}\! | \mathit{1}\! | |
L\! | X\! | Y\! | |
M\! | Y\! | Z\! | |
L \circ M | X\! | Z\! |
Table 9. Composite of Triadic and Dyadic Relations o---------o---------o---------o---------o---------o | # !1! | !1! | !1! | !1! | o=========o=========o=========o=========o=========o | G # T | U | | V | o---------o---------o---------o---------o---------o | L # | U | W | | o---------o---------o---------o---------o---------o | G o L # T | | W | V | o---------o---------o---------o---------o---------o |
\mathit{1}\! | \mathit{1}\! | \mathit{1}\! | \mathit{1}\! | |
G\! | T\! | U\! | V\! | |
L\! | U\! | W\! | ||
G \circ L | T\! | W\! | V\! |
Table 13. Another Brand of Composition o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | G # X | Y | Z | o---------o---------o---------o---------o | T # | Y | Z | o---------o---------o---------o---------o | G o T # X | | Z | o---------o---------o---------o---------o |
\mathit{1}\! | \mathit{1}\! | \mathit{1}\! | |
G\! | X\! | Y\! | Z\! |
T\! | Y\! | Z\! | |
G \circ T | X\! | Z\! |
Table 15. Conjunction Via Composition o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | L, # X | X | Y | o---------o---------o---------o---------o | S # | X | Y | o---------o---------o---------o---------o | L , S # X | | Y | o---------o---------o---------o---------o |
\mathit{1}\! | \mathit{1}\! | \mathit{1}\! | |
L,\! | X\! | X\! | Y\! |
S\! | X\! | Y\! | |
L,\!S | X\! | Y\! |
Table 18. Relational Composition P o Q o---------o---------o---------o---------o | # !1! | !1! | !1! | o=========o=========o=========o=========o | P # X | Y | | o---------o---------o---------o---------o | Q # | Y | Z | o---------o---------o---------o---------o | P o Q # X | | Z | o---------o---------o---------o---------o |
\mathit{1}\! | \mathit{1}\! | \mathit{1}\! | |
P\! | X\! | Y\! | |
Q\! | Y\! | Z\! | |
P \circ Q | X\! | Z\! |
Table 20. Arrow: J(L(u, v)) = K(Ju, Jv) o---------o---------o---------o---------o | # J | J | J | o=========o=========o=========o=========o | K # X | X | X | o---------o---------o---------o---------o | L # Y | Y | Y | o---------o---------o---------o---------o |
J\! | J\! | J\! | |
K\! | X\! | X\! | X\! |
L\! | Y\! | Y\! | Y\! |
Grammar Stuff
| ||||||
| ||||||
|
| ||||||||||
| ||||||||||
| ||||||||||
|
| ||||||||||
| ||||||||||
| ||||||||||
|
Table Stuff
F\! | F\! | F()\! | F\! |
\underline{0} | F_0^{(0)}\! | \underline{0} | (~) |
\underline{1} | F_1^{(0)}\! | \underline{1} | ((~)) |
F\! | F\! | F(x)\! | F\! | |
F(\underline{1}) | F(\underline{0}) | |||
F_0^{(1)}\! | F_{00}^{(1)}\! | \underline{0} | \underline{0} | (~) |
F_1^{(1)}\! | F_{01}^{(1)}\! | \underline{0} | \underline{1} | (x)\! |
F_2^{(1)}\! | F_{10}^{(1)}\! | \underline{1} | \underline{0} | x\! |
F_3^{(1)}\! | F_{11}^{(1)}\! | \underline{1} | \underline{1} | ((~)) |
F\! | F\! | F(x, y)\! | F\! | |||
F(\underline{1}, \underline{1}) | F(\underline{1}, \underline{0}) | F(\underline{0}, \underline{1}) | F(\underline{0}, \underline{0}) | |||
F_{0}^{(2)}\! | F_{0000}^{(2)}\! | \underline{0} | \underline{0} | \underline{0} | \underline{0} | (~) |
F_{1}^{(2)}\! | F_{0001}^{(2)}\! | \underline{0} | \underline{0} | \underline{0} | \underline{1} | (x)(y)\! |
F_{2}^{(2)}\! | F_{0010}^{(2)}\! | \underline{0} | \underline{0} | \underline{1} | \underline{0} | (x) y\! |
F_{3}^{(2)}\! | F_{0011}^{(2)}\! | \underline{0} | \underline{0} | \underline{1} | \underline{1} | (x)\! |
F_{4}^{(2)}\! | F_{0100}^{(2)}\! | \underline{0} | \underline{1} | \underline{0} | \underline{0} | x (y)\! |
F_{5}^{(2)}\! | F_{0101}^{(2)}\! | \underline{0} | \underline{1} | \underline{0} | \underline{1} | (y)\! |
F_{6}^{(2)}\! | F_{0110}^{(2)}\! | \underline{0} | \underline{1} | \underline{1} | \underline{0} | (x, y)\! |
F_{7}^{(2)}\! | F_{0111}^{(2)}\! | \underline{0} | \underline{1} | \underline{1} | \underline{1} | (x y)\! |
F_{8}^{(2)}\! | F_{1000}^{(2)}\! | \underline{1} | \underline{0} | \underline{0} | \underline{0} | x y\! |
F_{9}^{(2)}\! | F_{1001}^{(2)}\! | \underline{1} | \underline{0} | \underline{0} | \underline{1} | ((x, y))\! |
F_{10}^{(2)}\! | F_{1010}^{(2)}\! | \underline{1} | \underline{0} | \underline{1} | \underline{0} | y\! |
F_{11}^{(2)}\! | F_{1011}^{(2)}\! | \underline{1} | \underline{0} | \underline{1} | \underline{1} | (x (y))\! |
F_{12}^{(2)}\! | F_{1100}^{(2)}\! | \underline{1} | \underline{1} | \underline{0} | \underline{0} | x\! |
F_{13}^{(2)}\! | F_{1101}^{(2)}\! | \underline{1} | \underline{1} | \underline{0} | \underline{1} | ((x)y)\! |
F_{14}^{(2)}\! | F_{1110}^{(2)}\! | \underline{1} | \underline{1} | \underline{1} | \underline{0} | ((x)(y))\! |
F_{15}^{(2)}\! | F_{1111}^{(2)}\! | \underline{1} | \underline{1} | \underline{1} | \underline{1} | ((~)) |
fi‹x, y› |
|
|
|
fj‹u, v› | ||||||
|
|
|
A |
|
|
|
B | ||||||
|
|
|
|
|
| ||||||
|
|
|
|
|
|