Difference between revisions of "User:Jon Awbrey/MNO"
Jon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) |
||
Line 372: | Line 372: | ||
| 1 0 0 1 0 1 1 1 | | 1 0 0 1 0 1 1 1 | ||
| <math>(( p , q , r ))\!</math> | | <math>(( p , q , r ))\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | ==Work Area== | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f0f0ff; font-weight:bold; text-align:center; width:80%" | ||
+ | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math> | ||
+ | | width="20%" | <math>\mathcal{L}_1</math> | ||
+ | | width="20%" | <math>\mathcal{L}_2</math> | ||
+ | | width="20%" | <math>\mathcal{L}_3</math> | ||
+ | | width="20%" | <math>\mathcal{L}_4</math> | ||
+ | |- | ||
+ | | Decimal | ||
+ | | Binary | ||
+ | | Sequential | ||
+ | | Parenthetical | ||
+ | |- | ||
+ | | | ||
+ | | align="right" | <math>p =\!</math> | ||
+ | | 1 1 1 1 0 0 0 0 | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | | align="right" | <math>q =\!</math> | ||
+ | | 1 1 0 0 1 1 0 0 | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | | align="right" | <math>r =\!</math> | ||
+ | | 1 0 1 0 1 0 1 0 | ||
+ | | | ||
+ | |} | ||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%" | ||
+ | |- | ||
+ | | width="20%" | <math>f_{104}\!</math> | ||
+ | | width="20%" | <math>f_{01101000}\!</math> | ||
+ | | width="20%" | 0 1 1 0 1 0 0 0 | ||
+ | | width="20%" | <math>( p , q , r )\!</math> | ||
+ | |- | ||
+ | | <math>f_{148}\!</math> | ||
+ | | <math>f_{10010100}\!</math> | ||
+ | | 1 0 0 1 0 1 0 0 | ||
+ | | <math>( p , q , (r))\!</math> | ||
+ | |- | ||
+ | | <math>f_{146}\!</math> | ||
+ | | <math>f_{10010010}\!</math> | ||
+ | | 1 0 0 1 0 0 1 0 | ||
+ | | <math>( p , (q), r )\!</math> | ||
+ | |- | ||
+ | | <math>f_{97}\!</math> | ||
+ | | <math>f_{01100001}\!</math> | ||
+ | | 0 1 1 0 0 0 0 1 | ||
+ | | <math>( p , (q), (r))\!</math> | ||
+ | |- | ||
+ | | <math>f_{134}\!</math> | ||
+ | | <math>f_{10000110}\!</math> | ||
+ | | 1 0 0 0 0 1 1 0 | ||
+ | | <math>((p), q , r )\!</math> | ||
+ | |- | ||
+ | | <math>f_{73}\!</math> | ||
+ | | <math>f_{01001001}\!</math> | ||
+ | | 0 1 0 0 1 0 0 1 | ||
+ | | <math>((p), q , (r))\!</math> | ||
+ | |- | ||
+ | | <math>f_{41}\!</math> | ||
+ | | <math>f_{00101001}\!</math> | ||
+ | | 0 0 1 0 1 0 0 1 | ||
+ | | <math>((p), (q), r )\!</math> | ||
+ | |- | ||
+ | | <math>f_{22}\!</math> | ||
+ | | <math>f_{00010110}\!</math> | ||
+ | | 0 0 0 1 0 1 1 0 | ||
+ | | <math>((p), (q), (r))\!</math> | ||
+ | |} | ||
+ | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%" | ||
+ | |- | ||
+ | | width="20%" | <math>f_{233}\!</math> | ||
+ | | width="20%" | <math>f_{11101001}\!</math> | ||
+ | | width="20%" | 1 1 1 0 1 0 0 1 | ||
+ | | width="20%" | <math>(((p), (q), (r)))\!</math> | ||
+ | |- | ||
+ | | <math>f_{214}\!</math> | ||
+ | | <math>f_{11010110}\!</math> | ||
+ | | 1 1 0 1 0 1 1 0 | ||
+ | | <math>(((p), (q), r ))\!</math> | ||
+ | |- | ||
+ | | <math>f_{182}\!</math> | ||
+ | | <math>f_{10110110}\!</math> | ||
+ | | 1 0 1 1 0 1 1 0 | ||
+ | | <math>(((p), q , (r)))\!</math> | ||
+ | |- | ||
+ | | <math>f_{121}\!</math> | ||
+ | | <math>f_{01111001}\!</math> | ||
+ | | 0 1 1 1 1 0 0 1 | ||
+ | | <math>(((p), q , r ))\!</math> | ||
+ | |- | ||
+ | | <math>f_{158}\!</math> | ||
+ | | <math>f_{10011110}\!</math> | ||
+ | | 1 0 0 1 1 1 1 0 | ||
+ | | <math>(( p , (q), (r)))\!</math> | ||
+ | |- | ||
+ | | <math>f_{109}\!</math> | ||
+ | | <math>f_{01101101}\!</math> | ||
+ | | 0 1 1 0 1 1 0 1 | ||
+ | | <math>(( p , (q), r ))\!</math> | ||
+ | |- | ||
+ | | <math>f_{107}\!</math> | ||
+ | | <math>f_{01101011}\!</math> | ||
+ | | 0 1 1 0 1 0 1 1 | ||
+ | | <math>(( p , q , (r)))\!</math> | ||
+ | |- | ||
+ | | <math>f_{151}\!</math> | ||
+ | | <math>f_{10010111}\!</math> | ||
+ | | 1 0 0 1 0 1 1 1 | ||
+ | | <math>(( p , q , r ))\!</math> | ||
+ | |} | ||
+ | |||
+ | <br> | ||
+ | |||
+ | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" | ||
+ | |+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}</math> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | width="15%" | | ||
+ | <p><math>\mathcal{L}_1</math></p> | ||
+ | <p><math>\text{Decimal}</math></p> | ||
+ | | width="15%" | | ||
+ | <p><math>\mathcal{L}_2</math></p> | ||
+ | <p><math>\text{Binary}</math></p> | ||
+ | | width="15%" | | ||
+ | <p><math>\mathcal{L}_3</math></p> | ||
+ | <p><math>\text{Vector}</math></p> | ||
+ | | width="15%" | | ||
+ | <p><math>\mathcal{L}_4</math></p> | ||
+ | <p><math>\text{Cactus}</math></p> | ||
+ | | width="25%" | | ||
+ | <p><math>\mathcal{L}_5</math></p> | ||
+ | <p><math>\text{English}</math></p> | ||
+ | | width="15%" | | ||
+ | <p><math>\mathcal{L}_6</math></p> | ||
+ | <p><math>\text{Ordinary}</math></p> | ||
+ | |- style="background:#f0f0ff" | ||
+ | | | ||
+ | | align="right" | <math>p\colon\!</math> | ||
+ | | <math>1~1~0~0\!</math> | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- style="background:#f0f0ff" | ||
+ | | | ||
+ | | align="right" | <math>q\colon\!</math> | ||
+ | | <math>1~0~1~0\!</math> | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | f_0 | ||
+ | \\[4pt] | ||
+ | f_1 | ||
+ | \\[4pt] | ||
+ | f_2 | ||
+ | \\[4pt] | ||
+ | f_3 | ||
+ | \\[4pt] | ||
+ | f_4 | ||
+ | \\[4pt] | ||
+ | f_5 | ||
+ | \\[4pt] | ||
+ | f_6 | ||
+ | \\[4pt] | ||
+ | f_7 | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | f_{0000} | ||
+ | \\[4pt] | ||
+ | f_{0001} | ||
+ | \\[4pt] | ||
+ | f_{0010} | ||
+ | \\[4pt] | ||
+ | f_{0011} | ||
+ | \\[4pt] | ||
+ | f_{0100} | ||
+ | \\[4pt] | ||
+ | f_{0101} | ||
+ | \\[4pt] | ||
+ | f_{0110} | ||
+ | \\[4pt] | ||
+ | f_{0111} | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | 0~0~0~0 | ||
+ | \\[4pt] | ||
+ | 0~0~0~1 | ||
+ | \\[4pt] | ||
+ | 0~0~1~0 | ||
+ | \\[4pt] | ||
+ | 0~0~1~1 | ||
+ | \\[4pt] | ||
+ | 0~1~0~0 | ||
+ | \\[4pt] | ||
+ | 0~1~0~1 | ||
+ | \\[4pt] | ||
+ | 0~1~1~0 | ||
+ | \\[4pt] | ||
+ | 0~1~1~1 | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | (~) | ||
+ | \\[4pt] | ||
+ | (p)(q) | ||
+ | \\[4pt] | ||
+ | (p)~q~ | ||
+ | \\[4pt] | ||
+ | (p)~~~ | ||
+ | \\[4pt] | ||
+ | ~p~(q) | ||
+ | \\[4pt] | ||
+ | ~~~(q) | ||
+ | \\[4pt] | ||
+ | (p,~q) | ||
+ | \\[4pt] | ||
+ | (p~~q) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | \text{false} | ||
+ | \\[4pt] | ||
+ | \text{neither}~ p ~\text{nor}~ q | ||
+ | \\[4pt] | ||
+ | q ~\text{without}~ p | ||
+ | \\[4pt] | ||
+ | \text{not}~ p | ||
+ | \\[4pt] | ||
+ | p ~\text{without}~ q | ||
+ | \\[4pt] | ||
+ | \text{not}~ q | ||
+ | \\[4pt] | ||
+ | p ~\text{not equal to}~ q | ||
+ | \\[4pt] | ||
+ | \text{not both}~ p ~\text{and}~ q | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | 0 | ||
+ | \\[4pt] | ||
+ | \lnot p \land \lnot q | ||
+ | \\[4pt] | ||
+ | \lnot p \land q | ||
+ | \\[4pt] | ||
+ | \lnot p | ||
+ | \\[4pt] | ||
+ | p \land \lnot q | ||
+ | \\[4pt] | ||
+ | \lnot q | ||
+ | \\[4pt] | ||
+ | p \ne q | ||
+ | \\[4pt] | ||
+ | \lnot p \lor \lnot q | ||
+ | \end{matrix}</math> | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | f_8 | ||
+ | \\[4pt] | ||
+ | f_9 | ||
+ | \\[4pt] | ||
+ | f_{10} | ||
+ | \\[4pt] | ||
+ | f_{11} | ||
+ | \\[4pt] | ||
+ | f_{12} | ||
+ | \\[4pt] | ||
+ | f_{13} | ||
+ | \\[4pt] | ||
+ | f_{14} | ||
+ | \\[4pt] | ||
+ | f_{15} | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | f_{1000} | ||
+ | \\[4pt] | ||
+ | f_{1001} | ||
+ | \\[4pt] | ||
+ | f_{1010} | ||
+ | \\[4pt] | ||
+ | f_{1011} | ||
+ | \\[4pt] | ||
+ | f_{1100} | ||
+ | \\[4pt] | ||
+ | f_{1101} | ||
+ | \\[4pt] | ||
+ | f_{1110} | ||
+ | \\[4pt] | ||
+ | f_{1111} | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | 1~0~0~0 | ||
+ | \\[4pt] | ||
+ | 1~0~0~1 | ||
+ | \\[4pt] | ||
+ | 1~0~1~0 | ||
+ | \\[4pt] | ||
+ | 1~0~1~1 | ||
+ | \\[4pt] | ||
+ | 1~1~0~0 | ||
+ | \\[4pt] | ||
+ | 1~1~0~1 | ||
+ | \\[4pt] | ||
+ | 1~1~1~0 | ||
+ | \\[4pt] | ||
+ | 1~1~1~1 | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | ~~p~~q~~ | ||
+ | \\[4pt] | ||
+ | ((p,~q)) | ||
+ | \\[4pt] | ||
+ | ~~~~~q~~ | ||
+ | \\[4pt] | ||
+ | ~(p~(q)) | ||
+ | \\[4pt] | ||
+ | ~~p~~~~~ | ||
+ | \\[4pt] | ||
+ | ((p)~q)~ | ||
+ | \\[4pt] | ||
+ | ((p)(q)) | ||
+ | \\[4pt] | ||
+ | ((~)) | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | p ~\text{and}~ q | ||
+ | \\[4pt] | ||
+ | p ~\text{equal to}~ q | ||
+ | \\[4pt] | ||
+ | q | ||
+ | \\[4pt] | ||
+ | \text{not}~ p ~\text{without}~ q | ||
+ | \\[4pt] | ||
+ | p | ||
+ | \\[4pt] | ||
+ | \text{not}~ q ~\text{without}~ p | ||
+ | \\[4pt] | ||
+ | p ~\text{or}~ q | ||
+ | \\[4pt] | ||
+ | \text{true} | ||
+ | \end{matrix}</math> | ||
+ | | | ||
+ | <math>\begin{matrix} | ||
+ | p \land q | ||
+ | \\[4pt] | ||
+ | p = q | ||
+ | \\[4pt] | ||
+ | q | ||
+ | \\[4pt] | ||
+ | p \Rightarrow q | ||
+ | \\[4pt] | ||
+ | p | ||
+ | \\[4pt] | ||
+ | p \Leftarrow q | ||
+ | \\[4pt] | ||
+ | p \lor q | ||
+ | \\[4pt] | ||
+ | 1 | ||
+ | \end{matrix}</math> | ||
|} | |} | ||
Revision as of 01:24, 23 August 2009
Logical Graphs
Truth Tables
\(\mathcal{L}_1\) \(\text{Decimal}\) |
\(\mathcal{L}_2\) \(\text{Binary}\) |
\(\mathcal{L}_3\) \(\text{Vector}\) |
\(\mathcal{L}_4\) \(\text{Cactus}\) |
\(\mathcal{L}_5\) \(\text{English}\) |
\(\mathcal{L}_6\) \(\text{Ordinary}\) |
\(p\colon\!\) | \(1~1~0~0\!\) | ||||
\(q\colon\!\) | \(1~0~1~0\!\) | ||||
\(\begin{matrix} f_0 \\[4pt] f_1 \\[4pt] f_2 \\[4pt] f_3 \\[4pt] f_4 \\[4pt] f_5 \\[4pt] f_6 \\[4pt] f_7 \end{matrix}\) |
\(\begin{matrix} f_{0000} \\[4pt] f_{0001} \\[4pt] f_{0010} \\[4pt] f_{0011} \\[4pt] f_{0100} \\[4pt] f_{0101} \\[4pt] f_{0110} \\[4pt] f_{0111} \end{matrix}\) |
\(\begin{matrix} 0~0~0~0 \\[4pt] 0~0~0~1 \\[4pt] 0~0~1~0 \\[4pt] 0~0~1~1 \\[4pt] 0~1~0~0 \\[4pt] 0~1~0~1 \\[4pt] 0~1~1~0 \\[4pt] 0~1~1~1 \end{matrix}\) |
\(\begin{matrix} (~) \\[4pt] (p)(q) \\[4pt] (p)~q~ \\[4pt] (p)~~~ \\[4pt] ~p~(q) \\[4pt] ~~~(q) \\[4pt] (p,~q) \\[4pt] (p~~q) \end{matrix}\) |
\(\begin{matrix} \text{false} \\[4pt] \text{neither}~ p ~\text{nor}~ q \\[4pt] q ~\text{without}~ p \\[4pt] \text{not}~ p \\[4pt] p ~\text{without}~ q \\[4pt] \text{not}~ q \\[4pt] p ~\text{not equal to}~ q \\[4pt] \text{not both}~ p ~\text{and}~ q \end{matrix}\) |
\(\begin{matrix} 0 \\[4pt] \lnot p \land \lnot q \\[4pt] \lnot p \land q \\[4pt] \lnot p \\[4pt] p \land \lnot q \\[4pt] \lnot q \\[4pt] p \ne q \\[4pt] \lnot p \lor \lnot q \end{matrix}\) |
\(\begin{matrix} f_8 \\[4pt] f_9 \\[4pt] f_{10} \\[4pt] f_{11} \\[4pt] f_{12} \\[4pt] f_{13} \\[4pt] f_{14} \\[4pt] f_{15} \end{matrix}\) |
\(\begin{matrix} f_{1000} \\[4pt] f_{1001} \\[4pt] f_{1010} \\[4pt] f_{1011} \\[4pt] f_{1100} \\[4pt] f_{1101} \\[4pt] f_{1110} \\[4pt] f_{1111} \end{matrix}\) |
\(\begin{matrix} 1~0~0~0 \\[4pt] 1~0~0~1 \\[4pt] 1~0~1~0 \\[4pt] 1~0~1~1 \\[4pt] 1~1~0~0 \\[4pt] 1~1~0~1 \\[4pt] 1~1~1~0 \\[4pt] 1~1~1~1 \end{matrix}\) |
\(\begin{matrix} ~~p~~q~~ \\[4pt] ((p,~q)) \\[4pt] ~~~~~q~~ \\[4pt] ~(p~(q)) \\[4pt] ~~p~~~~~ \\[4pt] ((p)~q)~ \\[4pt] ((p)(q)) \\[4pt] ((~)) \end{matrix}\) |
\(\begin{matrix} p ~\text{and}~ q \\[4pt] p ~\text{equal to}~ q \\[4pt] q \\[4pt] \text{not}~ p ~\text{without}~ q \\[4pt] p \\[4pt] \text{not}~ q ~\text{without}~ p \\[4pt] p ~\text{or}~ q \\[4pt] \text{true} \end{matrix}\) |
\(\begin{matrix} p \land q \\[4pt] p = q \\[4pt] q \\[4pt] p \Rightarrow q \\[4pt] p \\[4pt] p \Leftarrow q \\[4pt] p \lor q \\[4pt] 1 \end{matrix}\) |
\(\mathcal{L}_1\) | \(\mathcal{L}_2\) | \(\mathcal{L}_3\) | \(\mathcal{L}_4\) |
Decimal | Binary | Sequential | Parenthetical |
\(p =\!\) | 1 1 1 1 0 0 0 0 | ||
\(q =\!\) | 1 1 0 0 1 1 0 0 | ||
\(r =\!\) | 1 0 1 0 1 0 1 0 |
\(f_{104}\!\) | \(f_{01101000}\!\) | 0 1 1 0 1 0 0 0 | \(( p , q , r )\!\) |
\(f_{148}\!\) | \(f_{10010100}\!\) | 1 0 0 1 0 1 0 0 | \(( p , q , (r))\!\) |
\(f_{146}\!\) | \(f_{10010010}\!\) | 1 0 0 1 0 0 1 0 | \(( p , (q), r )\!\) |
\(f_{97}\!\) | \(f_{01100001}\!\) | 0 1 1 0 0 0 0 1 | \(( p , (q), (r))\!\) |
\(f_{134}\!\) | \(f_{10000110}\!\) | 1 0 0 0 0 1 1 0 | \(((p), q , r )\!\) |
\(f_{73}\!\) | \(f_{01001001}\!\) | 0 1 0 0 1 0 0 1 | \(((p), q , (r))\!\) |
\(f_{41}\!\) | \(f_{00101001}\!\) | 0 0 1 0 1 0 0 1 | \(((p), (q), r )\!\) |
\(f_{22}\!\) | \(f_{00010110}\!\) | 0 0 0 1 0 1 1 0 | \(((p), (q), (r))\!\) |
\(f_{233}\!\) | \(f_{11101001}\!\) | 1 1 1 0 1 0 0 1 | \((((p), (q), (r)))\!\) |
\(f_{214}\!\) | \(f_{11010110}\!\) | 1 1 0 1 0 1 1 0 | \((((p), (q), r ))\!\) |
\(f_{182}\!\) | \(f_{10110110}\!\) | 1 0 1 1 0 1 1 0 | \((((p), q , (r)))\!\) |
\(f_{121}\!\) | \(f_{01111001}\!\) | 0 1 1 1 1 0 0 1 | \((((p), q , r ))\!\) |
\(f_{158}\!\) | \(f_{10011110}\!\) | 1 0 0 1 1 1 1 0 | \((( p , (q), (r)))\!\) |
\(f_{109}\!\) | \(f_{01101101}\!\) | 0 1 1 0 1 1 0 1 | \((( p , (q), r ))\!\) |
\(f_{107}\!\) | \(f_{01101011}\!\) | 0 1 1 0 1 0 1 1 | \((( p , q , (r)))\!\) |
\(f_{151}\!\) | \(f_{10010111}\!\) | 1 0 0 1 0 1 1 1 | \((( p , q , r ))\!\) |
Work Area
\(\mathcal{L}_1\) | \(\mathcal{L}_2\) | \(\mathcal{L}_3\) | \(\mathcal{L}_4\) |
Decimal | Binary | Sequential | Parenthetical |
\(p =\!\) | 1 1 1 1 0 0 0 0 | ||
\(q =\!\) | 1 1 0 0 1 1 0 0 | ||
\(r =\!\) | 1 0 1 0 1 0 1 0 |
\(f_{104}\!\) | \(f_{01101000}\!\) | 0 1 1 0 1 0 0 0 | \(( p , q , r )\!\) |
\(f_{148}\!\) | \(f_{10010100}\!\) | 1 0 0 1 0 1 0 0 | \(( p , q , (r))\!\) |
\(f_{146}\!\) | \(f_{10010010}\!\) | 1 0 0 1 0 0 1 0 | \(( p , (q), r )\!\) |
\(f_{97}\!\) | \(f_{01100001}\!\) | 0 1 1 0 0 0 0 1 | \(( p , (q), (r))\!\) |
\(f_{134}\!\) | \(f_{10000110}\!\) | 1 0 0 0 0 1 1 0 | \(((p), q , r )\!\) |
\(f_{73}\!\) | \(f_{01001001}\!\) | 0 1 0 0 1 0 0 1 | \(((p), q , (r))\!\) |
\(f_{41}\!\) | \(f_{00101001}\!\) | 0 0 1 0 1 0 0 1 | \(((p), (q), r )\!\) |
\(f_{22}\!\) | \(f_{00010110}\!\) | 0 0 0 1 0 1 1 0 | \(((p), (q), (r))\!\) |
\(f_{233}\!\) | \(f_{11101001}\!\) | 1 1 1 0 1 0 0 1 | \((((p), (q), (r)))\!\) |
\(f_{214}\!\) | \(f_{11010110}\!\) | 1 1 0 1 0 1 1 0 | \((((p), (q), r ))\!\) |
\(f_{182}\!\) | \(f_{10110110}\!\) | 1 0 1 1 0 1 1 0 | \((((p), q , (r)))\!\) |
\(f_{121}\!\) | \(f_{01111001}\!\) | 0 1 1 1 1 0 0 1 | \((((p), q , r ))\!\) |
\(f_{158}\!\) | \(f_{10011110}\!\) | 1 0 0 1 1 1 1 0 | \((( p , (q), (r)))\!\) |
\(f_{109}\!\) | \(f_{01101101}\!\) | 0 1 1 0 1 1 0 1 | \((( p , (q), r ))\!\) |
\(f_{107}\!\) | \(f_{01101011}\!\) | 0 1 1 0 1 0 1 1 | \((( p , q , (r)))\!\) |
\(f_{151}\!\) | \(f_{10010111}\!\) | 1 0 0 1 0 1 1 1 | \((( p , q , r ))\!\) |
\(\mathcal{L}_1\) \(\text{Decimal}\) |
\(\mathcal{L}_2\) \(\text{Binary}\) |
\(\mathcal{L}_3\) \(\text{Vector}\) |
\(\mathcal{L}_4\) \(\text{Cactus}\) |
\(\mathcal{L}_5\) \(\text{English}\) |
\(\mathcal{L}_6\) \(\text{Ordinary}\) |
\(p\colon\!\) | \(1~1~0~0\!\) | ||||
\(q\colon\!\) | \(1~0~1~0\!\) | ||||
\(\begin{matrix} f_0 \\[4pt] f_1 \\[4pt] f_2 \\[4pt] f_3 \\[4pt] f_4 \\[4pt] f_5 \\[4pt] f_6 \\[4pt] f_7 \end{matrix}\) |
\(\begin{matrix} f_{0000} \\[4pt] f_{0001} \\[4pt] f_{0010} \\[4pt] f_{0011} \\[4pt] f_{0100} \\[4pt] f_{0101} \\[4pt] f_{0110} \\[4pt] f_{0111} \end{matrix}\) |
\(\begin{matrix} 0~0~0~0 \\[4pt] 0~0~0~1 \\[4pt] 0~0~1~0 \\[4pt] 0~0~1~1 \\[4pt] 0~1~0~0 \\[4pt] 0~1~0~1 \\[4pt] 0~1~1~0 \\[4pt] 0~1~1~1 \end{matrix}\) |
\(\begin{matrix} (~) \\[4pt] (p)(q) \\[4pt] (p)~q~ \\[4pt] (p)~~~ \\[4pt] ~p~(q) \\[4pt] ~~~(q) \\[4pt] (p,~q) \\[4pt] (p~~q) \end{matrix}\) |
\(\begin{matrix} \text{false} \\[4pt] \text{neither}~ p ~\text{nor}~ q \\[4pt] q ~\text{without}~ p \\[4pt] \text{not}~ p \\[4pt] p ~\text{without}~ q \\[4pt] \text{not}~ q \\[4pt] p ~\text{not equal to}~ q \\[4pt] \text{not both}~ p ~\text{and}~ q \end{matrix}\) |
\(\begin{matrix} 0 \\[4pt] \lnot p \land \lnot q \\[4pt] \lnot p \land q \\[4pt] \lnot p \\[4pt] p \land \lnot q \\[4pt] \lnot q \\[4pt] p \ne q \\[4pt] \lnot p \lor \lnot q \end{matrix}\) |
\(\begin{matrix} f_8 \\[4pt] f_9 \\[4pt] f_{10} \\[4pt] f_{11} \\[4pt] f_{12} \\[4pt] f_{13} \\[4pt] f_{14} \\[4pt] f_{15} \end{matrix}\) |
\(\begin{matrix} f_{1000} \\[4pt] f_{1001} \\[4pt] f_{1010} \\[4pt] f_{1011} \\[4pt] f_{1100} \\[4pt] f_{1101} \\[4pt] f_{1110} \\[4pt] f_{1111} \end{matrix}\) |
\(\begin{matrix} 1~0~0~0 \\[4pt] 1~0~0~1 \\[4pt] 1~0~1~0 \\[4pt] 1~0~1~1 \\[4pt] 1~1~0~0 \\[4pt] 1~1~0~1 \\[4pt] 1~1~1~0 \\[4pt] 1~1~1~1 \end{matrix}\) |
\(\begin{matrix} ~~p~~q~~ \\[4pt] ((p,~q)) \\[4pt] ~~~~~q~~ \\[4pt] ~(p~(q)) \\[4pt] ~~p~~~~~ \\[4pt] ((p)~q)~ \\[4pt] ((p)(q)) \\[4pt] ((~)) \end{matrix}\) |
\(\begin{matrix} p ~\text{and}~ q \\[4pt] p ~\text{equal to}~ q \\[4pt] q \\[4pt] \text{not}~ p ~\text{without}~ q \\[4pt] p \\[4pt] \text{not}~ q ~\text{without}~ p \\[4pt] p ~\text{or}~ q \\[4pt] \text{true} \end{matrix}\) |
\(\begin{matrix} p \land q \\[4pt] p = q \\[4pt] q \\[4pt] p \Rightarrow q \\[4pt] p \\[4pt] p \Leftarrow q \\[4pt] p \lor q \\[4pt] 1 \end{matrix}\) |