Difference between revisions of "User:Jon Awbrey/MNO"
Jon Awbrey (talk | contribs)  | 
				Jon Awbrey (talk | contribs)   | 
				||
| Line 372: | Line 372: | ||
| 1 0 0 1 0 1 1 1  | | 1 0 0 1 0 1 1 1  | ||
| <math>(( p , q , r ))\!</math>  | | <math>(( p , q , r ))\!</math>  | ||
| + | |}  | ||
| + | |||
| + | <br>  | ||
| + | |||
| + | ==Work Area==  | ||
| + | |||
| + | <br>  | ||
| + | |||
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:#f0f0ff; font-weight:bold; text-align:center; width:80%"  | ||
| + | |+ <math>\text{Table 1.}~~\text{Logical Boundaries and Their Complements}</math>  | ||
| + | | width="20%" | <math>\mathcal{L}_1</math>  | ||
| + | | width="20%" | <math>\mathcal{L}_2</math>  | ||
| + | | width="20%" | <math>\mathcal{L}_3</math>  | ||
| + | | width="20%" | <math>\mathcal{L}_4</math>  | ||
| + | |-  | ||
| + | | Decimal  | ||
| + | | Binary  | ||
| + | | Sequential  | ||
| + | | Parenthetical  | ||
| + | |-  | ||
| + | |    | ||
| + | | align="right" | <math>p =\!</math>  | ||
| + | | 1 1 1 1 0 0 0 0  | ||
| + | |    | ||
| + | |-  | ||
| + | |    | ||
| + | | align="right" | <math>q =\!</math>  | ||
| + | | 1 1 0 0 1 1 0 0  | ||
| + | |    | ||
| + | |-  | ||
| + | |    | ||
| + | | align="right" | <math>r =\!</math>  | ||
| + | | 1 0 1 0 1 0 1 0  | ||
| + | |    | ||
| + | |}  | ||
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"  | ||
| + | |-  | ||
| + | | width="20%" | <math>f_{104}\!</math>  | ||
| + | | width="20%" | <math>f_{01101000}\!</math>  | ||
| + | | width="20%" | 0 1 1 0 1 0 0 0  | ||
| + | | width="20%" | <math>( p , q , r )\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{148}\!</math>  | ||
| + | | <math>f_{10010100}\!</math>  | ||
| + | | 1 0 0 1 0 1 0 0  | ||
| + | | <math>( p , q , (r))\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{146}\!</math>  | ||
| + | | <math>f_{10010010}\!</math>  | ||
| + | | 1 0 0 1 0 0 1 0  | ||
| + | | <math>( p , (q), r )\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{97}\!</math>  | ||
| + | | <math>f_{01100001}\!</math>  | ||
| + | | 0 1 1 0 0 0 0 1  | ||
| + | | <math>( p , (q), (r))\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{134}\!</math>  | ||
| + | | <math>f_{10000110}\!</math>  | ||
| + | | 1 0 0 0 0 1 1 0  | ||
| + | | <math>((p), q , r )\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{73}\!</math>  | ||
| + | | <math>f_{01001001}\!</math>  | ||
| + | | 0 1 0 0 1 0 0 1  | ||
| + | | <math>((p), q , (r))\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{41}\!</math>  | ||
| + | | <math>f_{00101001}\!</math>  | ||
| + | | 0 0 1 0 1 0 0 1  | ||
| + | | <math>((p), (q), r )\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{22}\!</math>  | ||
| + | | <math>f_{00010110}\!</math>  | ||
| + | | 0 0 0 1 0 1 1 0  | ||
| + | | <math>((p), (q), (r))\!</math>  | ||
| + | |}  | ||
| + | {|  align="center" border="1" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"  | ||
| + | |-  | ||
| + | | width="20%" | <math>f_{233}\!</math>  | ||
| + | | width="20%" | <math>f_{11101001}\!</math>  | ||
| + | | width="20%" | 1 1 1 0 1 0 0 1  | ||
| + | | width="20%" | <math>(((p), (q), (r)))\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{214}\!</math>  | ||
| + | | <math>f_{11010110}\!</math>  | ||
| + | | 1 1 0 1 0 1 1 0  | ||
| + | | <math>(((p), (q), r ))\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{182}\!</math>  | ||
| + | | <math>f_{10110110}\!</math>  | ||
| + | | 1 0 1 1 0 1 1 0  | ||
| + | | <math>(((p), q , (r)))\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{121}\!</math>  | ||
| + | | <math>f_{01111001}\!</math>  | ||
| + | | 0 1 1 1 1 0 0 1  | ||
| + | | <math>(((p), q , r ))\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{158}\!</math>  | ||
| + | | <math>f_{10011110}\!</math>  | ||
| + | | 1 0 0 1 1 1 1 0  | ||
| + | | <math>(( p , (q), (r)))\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{109}\!</math>  | ||
| + | | <math>f_{01101101}\!</math>  | ||
| + | | 0 1 1 0 1 1 0 1  | ||
| + | | <math>(( p , (q), r ))\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{107}\!</math>  | ||
| + | | <math>f_{01101011}\!</math>  | ||
| + | | 0 1 1 0 1 0 1 1  | ||
| + | | <math>(( p , q , (r)))\!</math>  | ||
| + | |-  | ||
| + | | <math>f_{151}\!</math>  | ||
| + | | <math>f_{10010111}\!</math>  | ||
| + | | 1 0 0 1 0 1 1 1  | ||
| + | | <math>(( p , q , r ))\!</math>  | ||
| + | |}  | ||
| + | |||
| + | <br>  | ||
| + | |||
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"  | ||
| + | |+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}</math>  | ||
| + | |- style="background:#f0f0ff"  | ||
| + | | width="15%" |  | ||
| + | <p><math>\mathcal{L}_1</math></p>  | ||
| + | <p><math>\text{Decimal}</math></p>  | ||
| + | | width="15%" |  | ||
| + | <p><math>\mathcal{L}_2</math></p>  | ||
| + | <p><math>\text{Binary}</math></p>  | ||
| + | | width="15%" |  | ||
| + | <p><math>\mathcal{L}_3</math></p>  | ||
| + | <p><math>\text{Vector}</math></p>  | ||
| + | | width="15%" |  | ||
| + | <p><math>\mathcal{L}_4</math></p>  | ||
| + | <p><math>\text{Cactus}</math></p>  | ||
| + | | width="25%" |  | ||
| + | <p><math>\mathcal{L}_5</math></p>  | ||
| + | <p><math>\text{English}</math></p>  | ||
| + | | width="15%" |  | ||
| + | <p><math>\mathcal{L}_6</math></p>  | ||
| + | <p><math>\text{Ordinary}</math></p>  | ||
| + | |- style="background:#f0f0ff"  | ||
| + | |    | ||
| + | | align="right" | <math>p\colon\!</math>  | ||
| + | | <math>1~1~0~0\!</math>  | ||
| + | |    | ||
| + | |    | ||
| + | |    | ||
| + | |- style="background:#f0f0ff"  | ||
| + | |    | ||
| + | | align="right" | <math>q\colon\!</math>  | ||
| + | | <math>1~0~1~0\!</math>  | ||
| + | |    | ||
| + | |    | ||
| + | |    | ||
| + | |-  | ||
| + | |  | ||
| + | <math>\begin{matrix}  | ||
| + | f_0  | ||
| + | \\[4pt]  | ||
| + | f_1  | ||
| + | \\[4pt]  | ||
| + | f_2  | ||
| + | \\[4pt]  | ||
| + | f_3  | ||
| + | \\[4pt]  | ||
| + | f_4  | ||
| + | \\[4pt]  | ||
| + | f_5  | ||
| + | \\[4pt]  | ||
| + | f_6  | ||
| + | \\[4pt]  | ||
| + | f_7  | ||
| + | \end{matrix}</math>  | ||
| + | |  | ||
| + | <math>\begin{matrix}  | ||
| + | f_{0000}  | ||
| + | \\[4pt]  | ||
| + | f_{0001}  | ||
| + | \\[4pt]  | ||
| + | f_{0010}  | ||
| + | \\[4pt]  | ||
| + | f_{0011}  | ||
| + | \\[4pt]  | ||
| + | f_{0100}  | ||
| + | \\[4pt]  | ||
| + | f_{0101}  | ||
| + | \\[4pt]  | ||
| + | f_{0110}  | ||
| + | \\[4pt]  | ||
| + | f_{0111}  | ||
| + | \end{matrix}</math>  | ||
| + | |  | ||
| + | <math>\begin{matrix}  | ||
| + | 0~0~0~0  | ||
| + | \\[4pt]  | ||
| + | 0~0~0~1  | ||
| + | \\[4pt]  | ||
| + | 0~0~1~0  | ||
| + | \\[4pt]  | ||
| + | 0~0~1~1  | ||
| + | \\[4pt]  | ||
| + | 0~1~0~0  | ||
| + | \\[4pt]  | ||
| + | 0~1~0~1  | ||
| + | \\[4pt]  | ||
| + | 0~1~1~0  | ||
| + | \\[4pt]  | ||
| + | 0~1~1~1  | ||
| + | \end{matrix}</math>  | ||
| + | |  | ||
| + | <math>\begin{matrix}  | ||
| + | (~)  | ||
| + | \\[4pt]  | ||
| + | (p)(q)  | ||
| + | \\[4pt]  | ||
| + | (p)~q~  | ||
| + | \\[4pt]  | ||
| + | (p)~~~  | ||
| + | \\[4pt]  | ||
| + | ~p~(q)  | ||
| + | \\[4pt]  | ||
| + | ~~~(q)  | ||
| + | \\[4pt]  | ||
| + | (p,~q)  | ||
| + | \\[4pt]  | ||
| + | (p~~q)  | ||
| + | \end{matrix}</math>  | ||
| + | |  | ||
| + | <math>\begin{matrix}  | ||
| + | \text{false}  | ||
| + | \\[4pt]  | ||
| + | \text{neither}~ p ~\text{nor}~ q  | ||
| + | \\[4pt]  | ||
| + | q ~\text{without}~ p  | ||
| + | \\[4pt]  | ||
| + | \text{not}~ p  | ||
| + | \\[4pt]  | ||
| + | p ~\text{without}~ q  | ||
| + | \\[4pt]  | ||
| + | \text{not}~ q  | ||
| + | \\[4pt]  | ||
| + | p ~\text{not equal to}~ q  | ||
| + | \\[4pt]  | ||
| + | \text{not both}~ p ~\text{and}~ q  | ||
| + | \end{matrix}</math>  | ||
| + | |  | ||
| + | <math>\begin{matrix}  | ||
| + | 0  | ||
| + | \\[4pt]  | ||
| + | \lnot p \land \lnot q  | ||
| + | \\[4pt]  | ||
| + | \lnot p \land q  | ||
| + | \\[4pt]  | ||
| + | \lnot p  | ||
| + | \\[4pt]  | ||
| + | p \land \lnot q  | ||
| + | \\[4pt]  | ||
| + | \lnot q  | ||
| + | \\[4pt]  | ||
| + | p \ne q  | ||
| + | \\[4pt]  | ||
| + | \lnot p \lor \lnot q  | ||
| + | \end{matrix}</math>  | ||
| + | |-  | ||
| + | |  | ||
| + | <math>\begin{matrix}  | ||
| + | f_8  | ||
| + | \\[4pt]  | ||
| + | f_9  | ||
| + | \\[4pt]  | ||
| + | f_{10}  | ||
| + | \\[4pt]  | ||
| + | f_{11}  | ||
| + | \\[4pt]  | ||
| + | f_{12}  | ||
| + | \\[4pt]  | ||
| + | f_{13}  | ||
| + | \\[4pt]  | ||
| + | f_{14}  | ||
| + | \\[4pt]  | ||
| + | f_{15}  | ||
| + | \end{matrix}</math>  | ||
| + | |  | ||
| + | <math>\begin{matrix}  | ||
| + | f_{1000}  | ||
| + | \\[4pt]  | ||
| + | f_{1001}  | ||
| + | \\[4pt]  | ||
| + | f_{1010}  | ||
| + | \\[4pt]  | ||
| + | f_{1011}  | ||
| + | \\[4pt]  | ||
| + | f_{1100}  | ||
| + | \\[4pt]  | ||
| + | f_{1101}  | ||
| + | \\[4pt]  | ||
| + | f_{1110}  | ||
| + | \\[4pt]  | ||
| + | f_{1111}  | ||
| + | \end{matrix}</math>  | ||
| + | |  | ||
| + | <math>\begin{matrix}  | ||
| + | 1~0~0~0  | ||
| + | \\[4pt]  | ||
| + | 1~0~0~1  | ||
| + | \\[4pt]  | ||
| + | 1~0~1~0  | ||
| + | \\[4pt]  | ||
| + | 1~0~1~1  | ||
| + | \\[4pt]  | ||
| + | 1~1~0~0  | ||
| + | \\[4pt]  | ||
| + | 1~1~0~1  | ||
| + | \\[4pt]  | ||
| + | 1~1~1~0  | ||
| + | \\[4pt]  | ||
| + | 1~1~1~1  | ||
| + | \end{matrix}</math>  | ||
| + | |  | ||
| + | <math>\begin{matrix}  | ||
| + | ~~p~~q~~  | ||
| + | \\[4pt]  | ||
| + | ((p,~q))  | ||
| + | \\[4pt]  | ||
| + | ~~~~~q~~  | ||
| + | \\[4pt]  | ||
| + | ~(p~(q))  | ||
| + | \\[4pt]  | ||
| + | ~~p~~~~~  | ||
| + | \\[4pt]  | ||
| + | ((p)~q)~  | ||
| + | \\[4pt]  | ||
| + | ((p)(q))  | ||
| + | \\[4pt]  | ||
| + | ((~))  | ||
| + | \end{matrix}</math>  | ||
| + | |  | ||
| + | <math>\begin{matrix}  | ||
| + | p ~\text{and}~ q  | ||
| + | \\[4pt]  | ||
| + | p ~\text{equal to}~ q  | ||
| + | \\[4pt]  | ||
| + | q  | ||
| + | \\[4pt]  | ||
| + | \text{not}~ p ~\text{without}~ q  | ||
| + | \\[4pt]  | ||
| + | p  | ||
| + | \\[4pt]  | ||
| + | \text{not}~ q ~\text{without}~ p  | ||
| + | \\[4pt]  | ||
| + | p ~\text{or}~ q  | ||
| + | \\[4pt]  | ||
| + | \text{true}  | ||
| + | \end{matrix}</math>  | ||
| + | |  | ||
| + | <math>\begin{matrix}  | ||
| + | p \land q  | ||
| + | \\[4pt]  | ||
| + | p = q  | ||
| + | \\[4pt]  | ||
| + | q  | ||
| + | \\[4pt]  | ||
| + | p \Rightarrow q  | ||
| + | \\[4pt]  | ||
| + | p  | ||
| + | \\[4pt]  | ||
| + | p \Leftarrow q  | ||
| + | \\[4pt]  | ||
| + | p \lor q  | ||
| + | \\[4pt]  | ||
| + | 1  | ||
| + | \end{matrix}</math>  | ||
|}  | |}  | ||
Revision as of 01:24, 23 August 2009
Logical Graphs
Truth Tables
| 
 \(\mathcal{L}_1\) \(\text{Decimal}\)  | 
 \(\mathcal{L}_2\) \(\text{Binary}\)  | 
 \(\mathcal{L}_3\) \(\text{Vector}\)  | 
 \(\mathcal{L}_4\) \(\text{Cactus}\)  | 
 \(\mathcal{L}_5\) \(\text{English}\)  | 
 \(\mathcal{L}_6\) \(\text{Ordinary}\)  | 
| \(p\colon\!\) | \(1~1~0~0\!\) | ||||
| \(q\colon\!\) | \(1~0~1~0\!\) | ||||
| 
 \(\begin{matrix} f_0 \\[4pt] f_1 \\[4pt] f_2 \\[4pt] f_3 \\[4pt] f_4 \\[4pt] f_5 \\[4pt] f_6 \\[4pt] f_7 \end{matrix}\)  | 
 \(\begin{matrix} f_{0000} \\[4pt] f_{0001} \\[4pt] f_{0010} \\[4pt] f_{0011} \\[4pt] f_{0100} \\[4pt] f_{0101} \\[4pt] f_{0110} \\[4pt] f_{0111} \end{matrix}\)  | 
 \(\begin{matrix} 0~0~0~0 \\[4pt] 0~0~0~1 \\[4pt] 0~0~1~0 \\[4pt] 0~0~1~1 \\[4pt] 0~1~0~0 \\[4pt] 0~1~0~1 \\[4pt] 0~1~1~0 \\[4pt] 0~1~1~1 \end{matrix}\)  | 
 \(\begin{matrix} (~) \\[4pt] (p)(q) \\[4pt] (p)~q~ \\[4pt] (p)~~~ \\[4pt] ~p~(q) \\[4pt] ~~~(q) \\[4pt] (p,~q) \\[4pt] (p~~q) \end{matrix}\)  | 
 \(\begin{matrix} \text{false} \\[4pt] \text{neither}~ p ~\text{nor}~ q \\[4pt] q ~\text{without}~ p \\[4pt] \text{not}~ p \\[4pt] p ~\text{without}~ q \\[4pt] \text{not}~ q \\[4pt] p ~\text{not equal to}~ q \\[4pt] \text{not both}~ p ~\text{and}~ q \end{matrix}\)  | 
 \(\begin{matrix} 0 \\[4pt] \lnot p \land \lnot q \\[4pt] \lnot p \land q \\[4pt] \lnot p \\[4pt] p \land \lnot q \\[4pt] \lnot q \\[4pt] p \ne q \\[4pt] \lnot p \lor \lnot q \end{matrix}\)  | 
| 
 \(\begin{matrix} f_8 \\[4pt] f_9 \\[4pt] f_{10} \\[4pt] f_{11} \\[4pt] f_{12} \\[4pt] f_{13} \\[4pt] f_{14} \\[4pt] f_{15} \end{matrix}\)  | 
 \(\begin{matrix} f_{1000} \\[4pt] f_{1001} \\[4pt] f_{1010} \\[4pt] f_{1011} \\[4pt] f_{1100} \\[4pt] f_{1101} \\[4pt] f_{1110} \\[4pt] f_{1111} \end{matrix}\)  | 
 \(\begin{matrix} 1~0~0~0 \\[4pt] 1~0~0~1 \\[4pt] 1~0~1~0 \\[4pt] 1~0~1~1 \\[4pt] 1~1~0~0 \\[4pt] 1~1~0~1 \\[4pt] 1~1~1~0 \\[4pt] 1~1~1~1 \end{matrix}\)  | 
 \(\begin{matrix} ~~p~~q~~ \\[4pt] ((p,~q)) \\[4pt] ~~~~~q~~ \\[4pt] ~(p~(q)) \\[4pt] ~~p~~~~~ \\[4pt] ((p)~q)~ \\[4pt] ((p)(q)) \\[4pt] ((~)) \end{matrix}\)  | 
 \(\begin{matrix} p ~\text{and}~ q \\[4pt] p ~\text{equal to}~ q \\[4pt] q \\[4pt] \text{not}~ p ~\text{without}~ q \\[4pt] p \\[4pt] \text{not}~ q ~\text{without}~ p \\[4pt] p ~\text{or}~ q \\[4pt] \text{true} \end{matrix}\)  | 
 \(\begin{matrix} p \land q \\[4pt] p = q \\[4pt] q \\[4pt] p \Rightarrow q \\[4pt] p \\[4pt] p \Leftarrow q \\[4pt] p \lor q \\[4pt] 1 \end{matrix}\)  | 
| \(\mathcal{L}_1\) | \(\mathcal{L}_2\) | \(\mathcal{L}_3\) | \(\mathcal{L}_4\) | 
| Decimal | Binary | Sequential | Parenthetical | 
| \(p =\!\) | 1 1 1 1 0 0 0 0 | ||
| \(q =\!\) | 1 1 0 0 1 1 0 0 | ||
| \(r =\!\) | 1 0 1 0 1 0 1 0 | 
| \(f_{104}\!\) | \(f_{01101000}\!\) | 0 1 1 0 1 0 0 0 | \(( p , q , r )\!\) | 
| \(f_{148}\!\) | \(f_{10010100}\!\) | 1 0 0 1 0 1 0 0 | \(( p , q , (r))\!\) | 
| \(f_{146}\!\) | \(f_{10010010}\!\) | 1 0 0 1 0 0 1 0 | \(( p , (q), r )\!\) | 
| \(f_{97}\!\) | \(f_{01100001}\!\) | 0 1 1 0 0 0 0 1 | \(( p , (q), (r))\!\) | 
| \(f_{134}\!\) | \(f_{10000110}\!\) | 1 0 0 0 0 1 1 0 | \(((p), q , r )\!\) | 
| \(f_{73}\!\) | \(f_{01001001}\!\) | 0 1 0 0 1 0 0 1 | \(((p), q , (r))\!\) | 
| \(f_{41}\!\) | \(f_{00101001}\!\) | 0 0 1 0 1 0 0 1 | \(((p), (q), r )\!\) | 
| \(f_{22}\!\) | \(f_{00010110}\!\) | 0 0 0 1 0 1 1 0 | \(((p), (q), (r))\!\) | 
| \(f_{233}\!\) | \(f_{11101001}\!\) | 1 1 1 0 1 0 0 1 | \((((p), (q), (r)))\!\) | 
| \(f_{214}\!\) | \(f_{11010110}\!\) | 1 1 0 1 0 1 1 0 | \((((p), (q), r ))\!\) | 
| \(f_{182}\!\) | \(f_{10110110}\!\) | 1 0 1 1 0 1 1 0 | \((((p), q , (r)))\!\) | 
| \(f_{121}\!\) | \(f_{01111001}\!\) | 0 1 1 1 1 0 0 1 | \((((p), q , r ))\!\) | 
| \(f_{158}\!\) | \(f_{10011110}\!\) | 1 0 0 1 1 1 1 0 | \((( p , (q), (r)))\!\) | 
| \(f_{109}\!\) | \(f_{01101101}\!\) | 0 1 1 0 1 1 0 1 | \((( p , (q), r ))\!\) | 
| \(f_{107}\!\) | \(f_{01101011}\!\) | 0 1 1 0 1 0 1 1 | \((( p , q , (r)))\!\) | 
| \(f_{151}\!\) | \(f_{10010111}\!\) | 1 0 0 1 0 1 1 1 | \((( p , q , r ))\!\) | 
Work Area
| \(\mathcal{L}_1\) | \(\mathcal{L}_2\) | \(\mathcal{L}_3\) | \(\mathcal{L}_4\) | 
| Decimal | Binary | Sequential | Parenthetical | 
| \(p =\!\) | 1 1 1 1 0 0 0 0 | ||
| \(q =\!\) | 1 1 0 0 1 1 0 0 | ||
| \(r =\!\) | 1 0 1 0 1 0 1 0 | 
| \(f_{104}\!\) | \(f_{01101000}\!\) | 0 1 1 0 1 0 0 0 | \(( p , q , r )\!\) | 
| \(f_{148}\!\) | \(f_{10010100}\!\) | 1 0 0 1 0 1 0 0 | \(( p , q , (r))\!\) | 
| \(f_{146}\!\) | \(f_{10010010}\!\) | 1 0 0 1 0 0 1 0 | \(( p , (q), r )\!\) | 
| \(f_{97}\!\) | \(f_{01100001}\!\) | 0 1 1 0 0 0 0 1 | \(( p , (q), (r))\!\) | 
| \(f_{134}\!\) | \(f_{10000110}\!\) | 1 0 0 0 0 1 1 0 | \(((p), q , r )\!\) | 
| \(f_{73}\!\) | \(f_{01001001}\!\) | 0 1 0 0 1 0 0 1 | \(((p), q , (r))\!\) | 
| \(f_{41}\!\) | \(f_{00101001}\!\) | 0 0 1 0 1 0 0 1 | \(((p), (q), r )\!\) | 
| \(f_{22}\!\) | \(f_{00010110}\!\) | 0 0 0 1 0 1 1 0 | \(((p), (q), (r))\!\) | 
| \(f_{233}\!\) | \(f_{11101001}\!\) | 1 1 1 0 1 0 0 1 | \((((p), (q), (r)))\!\) | 
| \(f_{214}\!\) | \(f_{11010110}\!\) | 1 1 0 1 0 1 1 0 | \((((p), (q), r ))\!\) | 
| \(f_{182}\!\) | \(f_{10110110}\!\) | 1 0 1 1 0 1 1 0 | \((((p), q , (r)))\!\) | 
| \(f_{121}\!\) | \(f_{01111001}\!\) | 0 1 1 1 1 0 0 1 | \((((p), q , r ))\!\) | 
| \(f_{158}\!\) | \(f_{10011110}\!\) | 1 0 0 1 1 1 1 0 | \((( p , (q), (r)))\!\) | 
| \(f_{109}\!\) | \(f_{01101101}\!\) | 0 1 1 0 1 1 0 1 | \((( p , (q), r ))\!\) | 
| \(f_{107}\!\) | \(f_{01101011}\!\) | 0 1 1 0 1 0 1 1 | \((( p , q , (r)))\!\) | 
| \(f_{151}\!\) | \(f_{10010111}\!\) | 1 0 0 1 0 1 1 1 | \((( p , q , r ))\!\) | 
| 
 \(\mathcal{L}_1\) \(\text{Decimal}\)  | 
 \(\mathcal{L}_2\) \(\text{Binary}\)  | 
 \(\mathcal{L}_3\) \(\text{Vector}\)  | 
 \(\mathcal{L}_4\) \(\text{Cactus}\)  | 
 \(\mathcal{L}_5\) \(\text{English}\)  | 
 \(\mathcal{L}_6\) \(\text{Ordinary}\)  | 
| \(p\colon\!\) | \(1~1~0~0\!\) | ||||
| \(q\colon\!\) | \(1~0~1~0\!\) | ||||
| 
 \(\begin{matrix} f_0 \\[4pt] f_1 \\[4pt] f_2 \\[4pt] f_3 \\[4pt] f_4 \\[4pt] f_5 \\[4pt] f_6 \\[4pt] f_7 \end{matrix}\)  | 
 \(\begin{matrix} f_{0000} \\[4pt] f_{0001} \\[4pt] f_{0010} \\[4pt] f_{0011} \\[4pt] f_{0100} \\[4pt] f_{0101} \\[4pt] f_{0110} \\[4pt] f_{0111} \end{matrix}\)  | 
 \(\begin{matrix} 0~0~0~0 \\[4pt] 0~0~0~1 \\[4pt] 0~0~1~0 \\[4pt] 0~0~1~1 \\[4pt] 0~1~0~0 \\[4pt] 0~1~0~1 \\[4pt] 0~1~1~0 \\[4pt] 0~1~1~1 \end{matrix}\)  | 
 \(\begin{matrix} (~) \\[4pt] (p)(q) \\[4pt] (p)~q~ \\[4pt] (p)~~~ \\[4pt] ~p~(q) \\[4pt] ~~~(q) \\[4pt] (p,~q) \\[4pt] (p~~q) \end{matrix}\)  | 
 \(\begin{matrix} \text{false} \\[4pt] \text{neither}~ p ~\text{nor}~ q \\[4pt] q ~\text{without}~ p \\[4pt] \text{not}~ p \\[4pt] p ~\text{without}~ q \\[4pt] \text{not}~ q \\[4pt] p ~\text{not equal to}~ q \\[4pt] \text{not both}~ p ~\text{and}~ q \end{matrix}\)  | 
 \(\begin{matrix} 0 \\[4pt] \lnot p \land \lnot q \\[4pt] \lnot p \land q \\[4pt] \lnot p \\[4pt] p \land \lnot q \\[4pt] \lnot q \\[4pt] p \ne q \\[4pt] \lnot p \lor \lnot q \end{matrix}\)  | 
| 
 \(\begin{matrix} f_8 \\[4pt] f_9 \\[4pt] f_{10} \\[4pt] f_{11} \\[4pt] f_{12} \\[4pt] f_{13} \\[4pt] f_{14} \\[4pt] f_{15} \end{matrix}\)  | 
 \(\begin{matrix} f_{1000} \\[4pt] f_{1001} \\[4pt] f_{1010} \\[4pt] f_{1011} \\[4pt] f_{1100} \\[4pt] f_{1101} \\[4pt] f_{1110} \\[4pt] f_{1111} \end{matrix}\)  | 
 \(\begin{matrix} 1~0~0~0 \\[4pt] 1~0~0~1 \\[4pt] 1~0~1~0 \\[4pt] 1~0~1~1 \\[4pt] 1~1~0~0 \\[4pt] 1~1~0~1 \\[4pt] 1~1~1~0 \\[4pt] 1~1~1~1 \end{matrix}\)  | 
 \(\begin{matrix} ~~p~~q~~ \\[4pt] ((p,~q)) \\[4pt] ~~~~~q~~ \\[4pt] ~(p~(q)) \\[4pt] ~~p~~~~~ \\[4pt] ((p)~q)~ \\[4pt] ((p)(q)) \\[4pt] ((~)) \end{matrix}\)  | 
 \(\begin{matrix} p ~\text{and}~ q \\[4pt] p ~\text{equal to}~ q \\[4pt] q \\[4pt] \text{not}~ p ~\text{without}~ q \\[4pt] p \\[4pt] \text{not}~ q ~\text{without}~ p \\[4pt] p ~\text{or}~ q \\[4pt] \text{true} \end{matrix}\)  | 
 \(\begin{matrix} p \land q \\[4pt] p = q \\[4pt] q \\[4pt] p \Rightarrow q \\[4pt] p \\[4pt] p \Leftarrow q \\[4pt] p \lor q \\[4pt] 1 \end{matrix}\)  |