Difference between revisions of "User:Jon Awbrey/SYMBOL"
Jon Awbrey (talk | contribs) |
Jon Awbrey (talk | contribs) (→Character Codes: HTML Unicode List) |
||
Line 7: | Line 7: | ||
* [http://www.nationalfinder.com/html/char-asc.htm HTML ASCII Characters] | * [http://www.nationalfinder.com/html/char-asc.htm HTML ASCII Characters] | ||
+ | * [http://www.sql-und-xml.de/unicode-database/sm.html HTML Unicode List] | ||
==Mathematical Symbols== | ==Mathematical Symbols== |
Revision as of 15:21, 27 October 2008
Formula Help
Character Codes
Mathematical Symbols
This page is a quick reference for the "standard" mathematical symbols in HTML that should work on most browsers, and is intended mainly for people editing mathematical articles on Wikipedia.
- Numbers: Template:Unicode ¼ ½ ¾ ¹ ² ³
- Analysis: Template:Unicode ∂ ∫ ∑ ∏ √ ∞ ∇ ℘ ℑ ℜ
- Arrows: Template:Unicode ← ↓ → ↑ ↔ ↵ ⇐ ⇓ ⇒ ⇑ ⇔
- Logic: Template:Unicode ¬ ∧ ∨ ∃ ∀
- Sets: Template:Unicode ∈ ∉ ∋ ∅ ⊆ ⊇ ⊃ ⊂ ⊄ ∪ ∩ ℵ
- Relations: Template:Unicode ≠ ≤ ≥ < > ≡ ≅ ≈ ∝
- Binary operations: Template:Unicode ± − × ÷ ⁄ ⊥ ⊕ ⊗ ∗
- Delimiters: Template:Unicode ⌈ ⌉ ⌊⌋ ⟨ ⟩ « »
- Miscellaneous: Template:Unicode † ¦ ∠ ∴ ◊ • ♠ ♣ ♥ ♦
- Punctuation: Template:Unicode ′ ″ ‾ ˆ ° ⋅ · … – —
- Spacing: thin ( ), n-width ( ), m-width ( ), and non-breaking spaces ( ).      
- Greek: α β γ Α Β Γ etc. α β γ Α Β Γ etc.
- Unicode: ⊢ (for example) gives the character ⊢ with unicode number x22A2 (hexadecimal). Warning: many of the more obscure unicode characters do not yet work on all browsers.
It might be easier to just copy and paste the symbols instead of using them by reference.
See Also
- The List of XML and HTML character entity references gives a longer list of HTML characters.
External Links
- List of HTML entity codes
- Hypertext Markup Language ASCII codes
- Huge collection of symbols, most of which probably do not work on many web browsers.
- Unicode character name index — finds the Unicode number of a character.
- W3C list of MathML characters indexed by code or name
Bytes & Parses
· | · |
'''·''' | · |
<code>·</code> | ·
|
<code>'''·'''</code> | ·
|
⋅ | ⋅ |
'''&sdot''' | ⋅ |
<code>⋅</code> | ⋅
|
<code>'''⋅'''</code> | ⋅
|
• | • |
∗ | ∗ |
◊ | ◊ |
{{unicode|·}} | Template:Unicode |
{{unicode|⋅}} | Template:Unicode |
{{unicode|•}} | Template:Unicode |
{{unicode|∗}} | Template:Unicode |
{{unicode|◊}} | Template:Unicode |
\(\cdot\) | \(\cdot\) |
\(\cdot\!\) | \(\cdot\!\) |
∈ | ∈ |
ε | ε |
\(\in\) | \(\in\) |
\(\in\!\) | \(\in\!\) |
\(\epsilon\) | \(\epsilon\) |
\(\epsilon\!\) | \(\epsilon\!\) |
\(\varepsilon\) | \(\varepsilon\) |
\(\varepsilon\!\) | \(\varepsilon\!\) |
η | η |
\(\eta\) | \(\eta\) |
\(\eta\!\) | \(\eta\!\) |
θ | θ |
\(\theta\) | \(\theta\) |
\(\theta\!\) | \(\theta\!\) |
\(\vartheta\) | \(\vartheta\) |
\(\vartheta\!\) | \(\vartheta\!\) |
χ | χ |
\(\chi\) | \(\chi\) |
\(\chi\!\) | \(\chi\!\) |
x = xJ = ¢(J) = J¢ = J ¢ = J¢ = J ¢
x = xJ = ¢(J) = J¢ = J ¢ = J¢ = J ¢
Display
New
W : ( [ Bn ] → [ Bk ] ) → ( [ Bn × Dn ] → [ Bk × Dk ] ) .
Concrete type \(\epsilon\) : ( U• → X• ) → ( EU• → X• ) Abstract type \(\epsilon\) : ( [Bn] → [Bk] ) → ( [Bn × Dn] → [Bk] )
Concrete type W : ( U• → X• ) → ( EU• → dX• ) Abstract type W : ( [Bn] → [Bk] ) → ( [Bn × Dn] → [Dk] )
\(\epsilon\)F : ( EU• → X• ⊆ EX• ) \(\cong\) ( [Bn × Dn] → [Bk] ⊆ [Bk × Dk] ) WF : ( EU• → dX• ⊆ EX• ) \(\cong\) ( [Bn × Dn] → [Dk] ⊆ [Bk × Dk] )
Old
W : ( [ Bn ] → [ Bk ] ) → ( [ Bn × Dn ] → [ Bk × Dk ] ) .
Concrete type \(\epsilon\) : ( U• → X• ) → ( EU• → X• ) Abstract type \(\epsilon\) : ( [Bn] → [Bk] ) → ( [Bn × Dn] → [Bk] )
Concrete type W : ( U• → X• ) → ( EU• → dX• ) Abstract type W : ( [Bn] → [Bk] ) → ( [Bn × Dn] → [Dk] )
\(\epsilon\)F : ( EU• → X• ⊆ EX• ) \(\cong\) ( [Bn × Dn] → [Bk] ⊆ [Bk × Dk] ) WF : ( EU• → dX• ⊆ EX• ) \(\cong\) ( [Bn × Dn] → [Dk] ⊆ [Bk × Dk] )
Epitext
Rosebud |
Rosebud |
Rosebud |
Gallery
’
`´
′
‹ ›
〈 〉
( )
( , )
A = {ai} = {a1, …, an} |
A = 〈A〉 = 〈a1, …, an〉= {‹a1, …, an›} |
A^ = (A → B) |
A• = [A] = [a1, …, an] |
dA = {dai} = {da1, …, dan} |
dA = 〈dA〉 = 〈da1, …, dan〉= {‹da1, …, dan›} |
dA^ = (dA → B) |
dA• = [dA] = [da1, …, dan] |
EA = A ∪ dA = {ai} ∪ {dai} = {a1, …, an, da1, …, dan} |
EA = 〈EA〉 = 〈a1, …, an, da1, …, dan〉= {‹a1, …, an, da1, …, dan›} |
EA^ = (EA → B) |
EA• = [EA] = [a1, …, an, da1, …, dan] |
X = {xi} = {x1, …, xn} |
X = 〈X〉 = 〈x1, …, xn〉= {‹x1, …, xn›} |
X^ = (X → B) |
X• = [X] = [x1, …, xn] |
dX = {dxi} = {dx1, …, dxn} |
dX = 〈dX〉 = 〈dx1, …, dxn〉= {‹dx1, …, dxn›} |
dX^ = (dX → B) |
dX• = [dX] = [dx1, …, dxn] |
X = {xi} = {x1, …, xn} |
X = 〈X〉 = 〈x1, …, xn〉= {‹x1, …, xn›} |
X^ = (X → B) |
X• = [X] = [x1, …, xn] |
f : Bk → B
f : Bn → B
f–1
Pow(X) = 2X
Arbitrary | → | Bn → B | X → B |
Basic | ¸> | Bn ¸> B | X ¸> B |
Linear | +> | Bn +> B | X +> B |
Positive | ¥> | Bn ¥> B | X ¥> B |
Singular | ××> | Bn ××> B | X ××> B |
The linear propositions, {hom : Bn → B} = (Bn +> B), may be expressed as sums of the following form:
\[\textstyle \sum_{i=1}^n e_i = e_1 + \ldots + e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = 0.\]
The positive propositions, {pos : Bn → B} = (Bn ¥> B), may be expressed as products of the following form:
\[\textstyle \prod_{i=1}^n e_i = e_1 \cdot \ldots \cdot e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = 1.\]
The singular propositions, {x : Bn → B} = (Bn ××> B), may be expressed as products of the following form:
\[\textstyle \prod_{i=1}^n e_i = e_1 \cdot \ldots \cdot e_n \ \mbox{where} \ \forall_{i=1}^n \ e_i = a_i \ \mbox{or} \ e_i = (a_i) = \lnot a_i.\]
I = {1, …, n}.
J ⊆ I
J ⊆ I
AJ
AJ
lJ : Bk → B
\(\ell_J : \mathbb{B}^k \to \mathbb{B}\)
θ : (Kn → K) → K
\(\theta\) : (Kn → K) → K
\(\theta\!\) : (Kn → K) → K
\(\vartheta\) : (Kn → K) → K
\(\vartheta\!\) : (Kn → K) → K
\(\chi\!\) : X → \(\bigcup_x \ \chi_x\!\)
\(\chi\!\) : Kn → ((Kn → K) → K)
\(\chi\!\) : (Kn → K) → (Kn → K)
\(\cong\)
\(\lceil x \rceil\)
xi(x) | χ(x ∈ Li) | \(\lceil x \in L_i \rceil\) | Li(x) |
xi(x) | \(\chi (x \in L_i)\) | \(\lceil x \in L_i \rceil\) | Li(x) |
‹0, 0, 0› | ‹0, 0, 0› |
‹0, 0, 1› | ‹0, 0, 1› |
‹0, 1, 0› | ‹0, 1, 0› |
‹0, 1, 1› | ‹0, 1, 1› |
‹1, 0, 0› | ‹1, 0, 0› |
‹1, 0, 1› | ‹1, 0, 1› |
‹1, 1, 0› | ‹1, 1, 0› |
‹1, 1, 1› | ‹1, 1, 1› |