Differential Logic
Ascii Tables
Table A1.  Propositional Forms On Two Variables
o---------o---------o---------o----------o------------------o----------o
| L_1     | L_2     | L_3     | L_4      | L_5              | L_6      |
|         |         |         |          |                  |          |
| Decimal | Binary  | Vector  | Cactus   | English          | Ordinary |
o---------o---------o---------o----------o------------------o----------o
|         |       x : 1 1 0 0 |          |                  |          |
|         |       y : 1 0 1 0 |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_0     | f_0000  | 0 0 0 0 |    ()    | false            |    0     |
|         |         |         |          |                  |          |
| f_1     | f_0001  | 0 0 0 1 |  (x)(y)  | neither x nor y  | ~x & ~y  |
|         |         |         |          |                  |          |
| f_2     | f_0010  | 0 0 1 0 |  (x) y   | y and not x      | ~x &  y  |
|         |         |         |          |                  |          |
| f_3     | f_0011  | 0 0 1 1 |  (x)     | not x            | ~x       |
|         |         |         |          |                  |          |
| f_4     | f_0100  | 0 1 0 0 |   x (y)  | x and not y      |  x & ~y  |
|         |         |         |          |                  |          |
| f_5     | f_0101  | 0 1 0 1 |     (y)  | not y            |      ~y  |
|         |         |         |          |                  |          |
| f_6     | f_0110  | 0 1 1 0 |  (x, y)  | x not equal to y |  x +  y  |
|         |         |         |          |                  |          |
| f_7     | f_0111  | 0 1 1 1 |  (x  y)  | not both x and y | ~x v ~y  |
|         |         |         |          |                  |          |
| f_8     | f_1000  | 1 0 0 0 |   x  y   | x and y          |  x &  y  |
|         |         |         |          |                  |          |
| f_9     | f_1001  | 1 0 0 1 | ((x, y)) | x equal to y     |  x =  y  |
|         |         |         |          |                  |          |
| f_10    | f_1010  | 1 0 1 0 |      y   | y                |       y  |
|         |         |         |          |                  |          |
| f_11    | f_1011  | 1 0 1 1 |  (x (y)) | not x without y  |  x => y  |
|         |         |         |          |                  |          |
| f_12    | f_1100  | 1 1 0 0 |   x      | x                |  x       |
|         |         |         |          |                  |          |
| f_13    | f_1101  | 1 1 0 1 | ((x) y)  | not y without x  |  x <= y  |
|         |         |         |          |                  |          |
| f_14    | f_1110  | 1 1 1 0 | ((x)(y)) | x or y           |  x v  y  |
|         |         |         |          |                  |          |
| f_15    | f_1111  | 1 1 1 1 |   (())   | true             |    1     |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
Table A2.  Propositional Forms On Two Variables
o---------o---------o---------o----------o------------------o----------o
| L_1     | L_2     | L_3     | L_4      | L_5              | L_6      |
|         |         |         |          |                  |          |
| Decimal | Binary  | Vector  | Cactus   | English          | Ordinary |
o---------o---------o---------o----------o------------------o----------o
|         |       x : 1 1 0 0 |          |                  |          |
|         |       y : 1 0 1 0 |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_0     | f_0000  | 0 0 0 0 |    ()    | false            |    0     |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_1     | f_0001  | 0 0 0 1 |  (x)(y)  | neither x nor y  | ~x & ~y  |
|         |         |         |          |                  |          |
| f_2     | f_0010  | 0 0 1 0 |  (x) y   | y and not x      | ~x &  y  |
|         |         |         |          |                  |          |
| f_4     | f_0100  | 0 1 0 0 |   x (y)  | x and not y      |  x & ~y  |
|         |         |         |          |                  |          |
| f_8     | f_1000  | 1 0 0 0 |   x  y   | x and y          |  x &  y  |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_3     | f_0011  | 0 0 1 1 |  (x)     | not x            | ~x       |
|         |         |         |          |                  |          |
| f_12    | f_1100  | 1 1 0 0 |   x      | x                |  x       |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_6     | f_0110  | 0 1 1 0 |  (x, y)  | x not equal to y |  x +  y  |
|         |         |         |          |                  |          |
| f_9     | f_1001  | 1 0 0 1 | ((x, y)) | x equal to y     |  x =  y  |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_5     | f_0101  | 0 1 0 1 |     (y)  | not y            |      ~y  |
|         |         |         |          |                  |          |
| f_10    | f_1010  | 1 0 1 0 |      y   | y                |       y  |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_7     | f_0111  | 0 1 1 1 |  (x  y)  | not both x and y | ~x v ~y  |
|         |         |         |          |                  |          |
| f_11    | f_1011  | 1 0 1 1 |  (x (y)) | not x without y  |  x => y  |
|         |         |         |          |                  |          |
| f_13    | f_1101  | 1 1 0 1 | ((x) y)  | not y without x  |  x <= y  |
|         |         |         |          |                  |          |
| f_14    | f_1110  | 1 1 1 0 | ((x)(y)) | x or y           |  x v  y  |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_15    | f_1111  | 1 1 1 1 |   (())   | true             |    1     |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
Table A3.  Ef Expanded Over Differential Features {dx, dy}
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
|      |     f      |   T_11 f   |   T_10 f   |   T_01 f   |   T_00 f   |
|      |            |            |            |            |            |
|      |            | Ef| dx dy  | Ef| dx(dy) | Ef| (dx)dy | Ef|(dx)(dy)|
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_0  |     ()     |     ()     |     ()     |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_1  |   (x)(y)   |    x  y    |    x (y)   |   (x) y    |   (x)(y)   |
|      |            |            |            |            |            |
| f_2  |   (x) y    |    x (y)   |    x  y    |   (x)(y)   |   (x) y    |
|      |            |            |            |            |            |
| f_4  |    x (y)   |   (x) y    |   (x)(y)   |    x  y    |    x (y)   |
|      |            |            |            |            |            |
| f_8  |    x  y    |   (x)(y)   |   (x) y    |    x (y)   |    x  y    |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_3  |   (x)      |    x       |    x       |   (x)      |   (x)      |
|      |            |            |            |            |            |
| f_12 |    x       |   (x)      |   (x)      |    x       |    x       |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_6  |   (x, y)   |   (x, y)   |  ((x, y))  |  ((x, y))  |   (x, y)   |
|      |            |            |            |            |            |
| f_9  |  ((x, y))  |  ((x, y))  |   (x, y)   |   (x, y)   |  ((x, y))  |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_5  |      (y)   |       y    |      (y)   |       y    |      (y)   |
|      |            |            |            |            |            |
| f_10 |       y    |      (y)   |       y    |      (y)   |       y    |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_7  |   (x  y)   |  ((x)(y))  |  ((x) y)   |   (x (y))  |   (x  y)   |
|      |            |            |            |            |            |
| f_11 |   (x (y))  |  ((x) y)   |  ((x)(y))  |   (x  y)   |   (x (y))  |
|      |            |            |            |            |            |
| f_13 |  ((x) y)   |   (x (y))  |   (x  y)   |  ((x)(y))  |  ((x) y)   |
|      |            |            |            |            |            |
| f_14 |  ((x)(y))  |   (x  y)   |   (x (y))  |  ((x) y)   |  ((x)(y))  |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_15 |    (())    |    (())    |    (())    |    (())    |    (())    |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|                   |            |            |            |            |
| Fixed Point Total |      4     |      4     |      4     |     16     |
|                   |            |            |            |            |
o-------------------o------------o------------o------------o------------o
Table A4.  Df Expanded Over Differential Features {dx, dy}
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
|      |     f      | Df| dx dy  | Df| dx(dy) | Df| (dx)dy | Df|(dx)(dy)|
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_0  |     ()     |     ()     |     ()     |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_1  |   (x)(y)   |  ((x, y))  |    (y)     |    (x)     |     ()     |
|      |            |            |            |            |            |
| f_2  |   (x) y    |   (x, y)   |     y      |    (x)     |     ()     |
|      |            |            |            |            |            |
| f_4  |    x (y)   |   (x, y)   |    (y)     |     x      |     ()     |
|      |            |            |            |            |            |
| f_8  |    x  y    |  ((x, y))  |     y      |     x      |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_3  |   (x)      |    (())    |    (())    |     ()     |     ()     |
|      |            |            |            |            |            |
| f_12 |    x       |    (())    |    (())    |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_6  |   (x, y)   |     ()     |    (())    |    (())    |     ()     |
|      |            |            |            |            |            |
| f_9  |  ((x, y))  |     ()     |    (())    |    (())    |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_5  |      (y)   |    (())    |     ()     |    (())    |     ()     |
|      |            |            |            |            |            |
| f_10 |       y    |    (())    |     ()     |    (())    |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_7  |   (x  y)   |  ((x, y))  |     y      |     x      |     ()     |
|      |            |            |            |            |            |
| f_11 |   (x (y))  |   (x, y)   |    (y)     |     x      |     ()     |
|      |            |            |            |            |            |
| f_13 |  ((x) y)   |   (x, y)   |     y      |    (x)     |     ()     |
|      |            |            |            |            |            |
| f_14 |  ((x)(y))  |  ((x, y))  |    (y)     |    (x)     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_15 |    (())    |     ()     |     ()     |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
Table A5.  Ef Expanded Over Ordinary Features {x, y}
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
|      |     f      |  Ef | xy   | Ef | x(y)  | Ef | (x)y  | Ef | (x)(y)|
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_0  |     ()     |     ()     |     ()     |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_1  |   (x)(y)   |   dx  dy   |   dx (dy)  |  (dx) dy   |  (dx)(dy)  |
|      |            |            |            |            |            |
| f_2  |   (x) y    |   dx (dy)  |   dx  dy   |  (dx)(dy)  |  (dx) dy   |
|      |            |            |            |            |            |
| f_4  |    x (y)   |  (dx) dy   |  (dx)(dy)  |   dx  dy   |   dx (dy)  |
|      |            |            |            |            |            |
| f_8  |    x  y    |  (dx)(dy)  |  (dx) dy   |   dx (dy)  |   dx  dy   |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_3  |   (x)      |   dx       |   dx       |  (dx)      |  (dx)      |
|      |            |            |            |            |            |
| f_12 |    x       |  (dx)      |  (dx)      |   dx       |   dx       |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_6  |   (x, y)   |  (dx, dy)  | ((dx, dy)) | ((dx, dy)) |  (dx, dy)  |
|      |            |            |            |            |            |
| f_9  |  ((x, y))  | ((dx, dy)) |  (dx, dy)  |  (dx, dy)  | ((dx, dy)) |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_5  |      (y)   |       dy   |      (dy)  |       dy   |      (dy)  |
|      |            |            |            |            |            |
| f_10 |       y    |      (dy)  |       dy   |      (dy)  |       dy   |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_7  |   (x  y)   | ((dx)(dy)) | ((dx) dy)  |  (dx (dy)) |  (dx  dy)  |
|      |            |            |            |            |            |
| f_11 |   (x (y))  | ((dx) dy)  | ((dx)(dy)) |  (dx  dy)  |  (dx (dy)) |
|      |            |            |            |            |            |
| f_13 |  ((x) y)   |  (dx (dy)) |  (dx  dy)  | ((dx)(dy)) | ((dx) dy)  |
|      |            |            |            |            |            |
| f_14 |  ((x)(y))  |  (dx  dy)  |  (dx (dy)) | ((dx) dy)  | ((dx)(dy)) |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_15 |    (())    |    (())    |    (())    |    (())    |    (())    |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
Table A6.  Df Expanded Over Ordinary Features {x, y}
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
|      |     f      |  Df | xy   | Df | x(y)  | Df | (x)y  | Df | (x)(y)|
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_0  |     ()     |     ()     |     ()     |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_1  |   (x)(y)   |   dx  dy   |   dx (dy)  |  (dx) dy   | ((dx)(dy)) |
|      |            |            |            |            |            |
| f_2  |   (x) y    |   dx (dy)  |   dx  dy   | ((dx)(dy)) |  (dx) dy   |
|      |            |            |            |            |            |
| f_4  |    x (y)   |  (dx) dy   | ((dx)(dy)) |   dx  dy   |   dx (dy)  |
|      |            |            |            |            |            |
| f_8  |    x  y    | ((dx)(dy)) |  (dx) dy   |   dx (dy)  |   dx  dy   |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_3  |   (x)      |   dx       |   dx       |   dx       |   dx       |
|      |            |            |            |            |            |
| f_12 |    x       |   dx       |   dx       |   dx       |   dx       |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_6  |   (x, y)   |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |
|      |            |            |            |            |            |
| f_9  |  ((x, y))  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_5  |      (y)   |       dy   |       dy   |       dy   |       dy   |
|      |            |            |            |            |            |
| f_10 |       y    |       dy   |       dy   |       dy   |       dy   |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_7  |   (x  y)   | ((dx)(dy)) |  (dx) dy   |   dx (dy)  |   dx  dy   |
|      |            |            |            |            |            |
| f_11 |   (x (y))  |  (dx) dy   | ((dx)(dy)) |   dx  dy   |   dx (dy)  |
|      |            |            |            |            |            |
| f_13 |  ((x) y)   |   dx (dy)  |   dx  dy   | ((dx)(dy)) |  (dx) dy   |
|      |            |            |            |            |            |
| f_14 |  ((x)(y))  |   dx  dy   |   dx (dy)  |  (dx) dy   | ((dx)(dy)) |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_15 |    (())    |     ()     |     ()     |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
Wiki Tables : New Versions
Propositional Forms on Two Variables
Table A1.  Propositional Forms on Two Variables
| L1 | L2 | L3 | L4 | L5 | L6 | 
|  | x : | 1 1 0 0 |  |  |  | 
|  | y : | 1 0 1 0 |  |  |  | 
| f0 | f0000 | 0 0 0 0 | ( ) | false | 0 | 
| f1 | f0001 | 0 0 0 1 | (x)(y) | neither x nor y | ¬x ∧ ¬y | 
| f2 | f0010 | 0 0 1 0 | (x) y | y and not x | ¬x ∧ y | 
| f3 | f0011 | 0 0 1 1 | (x) | not x | ¬x | 
| f4 | f0100 | 0 1 0 0 | x (y) | x and not y | x ∧ ¬y | 
| f5 | f0101 | 0 1 0 1 | (y) | not y | ¬y | 
| f6 | f0110 | 0 1 1 0 | (x, y) | x not equal to y | x ≠ y | 
| f7 | f0111 | 0 1 1 1 | (x y) | not both x and y | ¬x ∨ ¬y | 
| f8 | f1000 | 1 0 0 0 | x y | x and y | x ∧ y | 
| f9 | f1001 | 1 0 0 1 | ((x, y)) | x equal to y | x = y | 
| f10 | f1010 | 1 0 1 0 | y | y | y | 
| f11 | f1011 | 1 0 1 1 | (x (y)) | not x without y | x ⇒ y | 
| f12 | f1100 | 1 1 0 0 | x | x | x | 
| f13 | f1101 | 1 1 0 1 | ((x) y) | not y without x | x ⇐ y | 
| f14 | f1110 | 1 1 1 0 | ((x)(y)) | x or y | x ∨ y | 
| f15 | f1111 | 1 1 1 1 | (( )) | true | 1 | 
Table A2.  Propositional Forms on Two Variables
| L1 | L2 | L3 | L4 | L5 | L6 | 
|  | x : | 1 1 0 0 |  |  |  | 
|  | y : | 1 0 1 0 |  |  |  | 
| f0 | f0000 | 0 0 0 0 | ( ) | false | 0 | 
|  |  | 
| 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 |  |  | 
| neither x nor y not x but y x but not y x and y |  | 
| ¬x ∧ ¬y ¬x ∧ y x ∧ ¬y x ∧ y |  | 
|  |  |  |  |  |  | 
|  |  |  |  | 
| x not equal to y x equal to y |  |  | 
|  |  |  |  |  |  | 
|  |  | 
| 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 |  | 
| (x y) (x (y)) ((x) y) ((x)(y)) |  | 
| not both x and y not x without y not y without x x or y |  | 
| ¬x ∨ ¬y x ⇒ y x ⇐ y x ∨ y |  | 
| f15 | f1111 | 1 1 1 1 | (( )) | true | 1 | 
Differential Propositions
Table 14.  Differential Propositions
|  | A : | 1 1 0 0 |  |  |  | 
|  | dA : | 1 0 1 0 |  |  |  | 
| f0 | g0 | 0 0 0 0 | ( ) | False | 0 | 
|  |  | 
| 0 0 0 10 0 1 0
 0 1 0 0
 1 0 0 0
 |  | 
| (A)(dA)(A) dA
 A (dA)
 A dA
 |  | 
| Neither A nor dANot A but dA
 A but not dA
 A and dA
 |  | 
| ¬A ∧ ¬dA¬A ∧ dA
 A ∧ ¬dA
 A ∧ dA
 |  | 
|  |  |  |  |  |  | 
|  |  |  |  | 
| A not equal to dAA equal to dA
 |  |  | 
|  |  |  |  |  |  | 
|  |  | 
| 0 1 1 11 0 1 1
 1 1 0 1
 1 1 1 0
 |  | 
| (A dA)(A (dA))
 ((A) dA)
 ((A)(dA))
 |  | 
| Not both A and dANot A without dA
 Not dA without A
 A or dA
 |  | 
| ¬A ∨ ¬dAA ⇒ dA
 A ⇐ dA
 A ∨ dA
 |  | 
| f3 | g15 | 1 1 1 1 | (( )) | True | 1 | 
Wiki Tables : Old Versions
Propositional Forms on Two Variables
Table 1.  Propositional Forms on Two Variables
| L1 | L2 | L3 | L4 | L5 | L6 | 
|  | x : | 1 1 0 0 |  |  |  | 
|  | y : | 1 0 1 0 |  |  |  | 
| f0 | f0000 | 0 0 0 0 | ( ) | false | 0 | 
| f1 | f0001 | 0 0 0 1 | (x)(y) | neither x nor y | ¬x ∧ ¬y | 
| f2 | f0010 | 0 0 1 0 | (x) y | y and not x | ¬x ∧ y | 
| f3 | f0011 | 0 0 1 1 | (x) | not x | ¬x | 
| f4 | f0100 | 0 1 0 0 | x (y) | x and not y | x ∧ ¬y | 
| f5 | f0101 | 0 1 0 1 | (y) | not y | ¬y | 
| f6 | f0110 | 0 1 1 0 | (x, y) | x not equal to y | x ≠ y | 
| f7 | f0111 | 0 1 1 1 | (x y) | not both x and y | ¬x ∨ ¬y | 
| f8 | f1000 | 1 0 0 0 | x y | x and y | x ∧ y | 
| f9 | f1001 | 1 0 0 1 | ((x, y)) | x equal to y | x = y | 
| f10 | f1010 | 1 0 1 0 | y | y | y | 
| f11 | f1011 | 1 0 1 1 | (x (y)) | not x without y | x → y | 
| f12 | f1100 | 1 1 0 0 | x | x | x | 
| f13 | f1101 | 1 1 0 1 | ((x) y) | not y without x | x ← y | 
| f14 | f1110 | 1 1 1 0 | ((x)(y)) | x or y | x ∨ y | 
| f15 | f1111 | 1 1 1 1 | (( )) | true | 1 | 
Differential Propositions
Table 14.  Differential Propositions
|  | A : | 1 1 0 0 |  |  |  | 
|  | dA : | 1 0 1 0 |  |  |  | 
| f0 | g0 | 0 0 0 0 | ( ) | False | 0 | 
|  |  | 
| 0 0 0 10 0 1 0
 0 1 0 0
 1 0 0 0
 |  | 
| (A)(dA)(A) dA
 A (dA)
 A dA
 |  | 
| Neither A nor dANot A but dA
 A but not dA
 A and dA
 |  | 
| ¬A ∧ ¬dA¬A ∧ dA
 A ∧ ¬dA
 A ∧ dA
 |  | 
|  |  |  |  |  |  | 
|  |  |  |  | 
| A not equal to dAA equal to dA
 |  |  | 
|  |  |  |  |  |  | 
|  |  | 
| 0 1 1 11 0 1 1
 1 1 0 1
 1 1 1 0
 |  | 
| (A dA)(A (dA))
 ((A) dA)
 ((A)(dA))
 |  | 
| Not both A and dANot A without dA
 Not dA without A
 A or dA
 |  | 
| ¬A ∨ ¬dAA → dA
 A ← dA
 A ∨ dA
 |  | 
| f3 | g15 | 1 1 1 1 | (( )) | True | 1 | 
Wiki TeX Tables
\(\text{Table 0.}~~\text{Propositional Forms on Two Variables}\)
| \(\mathcal{L}_1\) \(\text{Decimal}\) | \(\mathcal{L}_2\) \(\text{Binary}\) | \(\mathcal{L}_3\) \(\text{Vector}\) | \(\mathcal{L}_4\) \(\text{Cactus}\) | \(\mathcal{L}_5\) \(\text{English}\) | \(\mathcal{L}_6\) \(\text{Ordinary}\) | 
|  | \(x\colon\!\) | \(1~1~0~0\!\) |  |  |  | 
|  | \(y\colon\!\) | \(1~0~1~0\!\) |  |  |  | 
| \(f_{0}\!\) | \(f_{0000}\!\) | \(0~0~0~0\!\) | \((~)\!\) | \(\text{false}\!\) | \(0\!\) | 
| \(f_{1}\!\) | \(f_{0001}\!\) | \(0~0~0~1\!\) | \((x)(y)\!\) | \(\text{neither}~ x ~\text{nor}~ y\!\) | \(\lnot x \land \lnot y\!\) | 
| \(f_{2}\!\) | \(f_{0010}\!\) | \(0~0~1~0\!\) | \((x)~y\!\) | \(y ~\text{without}~ x\!\) | \(\lnot x \land y\!\) | 
| \(f_{3}\!\) | \(f_{0011}\!\) | \(0~0~1~1\!\) | \((x)\!\) | \(\text{not}~ x\!\) | \(\lnot x\!\) | 
| \(f_{4}\!\) | \(f_{0100}\!\) | \(0~1~0~0\!\) | \(x~(y)\!\) | \(x ~\text{without}~ y\!\) | \(x \land \lnot y\!\) | 
| \(f_{5}\!\) | \(f_{0101}\!\) | \(0~1~0~1\!\) | \((y)\!\) | \(\text{not}~ y\!\) | \(\lnot y\!\) | 
| \(f_{6}\!\) | \(f_{0110}\!\) | \(0~1~1~0\!\) | \((x,~y)\!\) | \(x ~\text{not equal to}~ y\!\) | \(x \ne y\!\) | 
| \(f_{7}\!\) | \(f_{0111}\!\) | \(0~1~1~1\!\) | \((x~y)\!\) | \(\text{not both}~ x ~\text{and}~ y\!\) | \(\lnot x \lor \lnot y\!\) | 
| \(f_{8}\!\) | \(f_{1000}\!\) | \(1~0~0~0\!\) | \(x~y\!\) | \(x ~\text{and}~ y\!\) | \(x \land y\!\) | 
| \(f_{9}\!\) | \(f_{1001}\!\) | \(1~0~0~1\!\) | \(((x,~y))\!\) | \(x ~\text{equal to}~ y\!\) | \(x = y\!\) | 
| \(f_{10}\!\) | \(f_{1010}\!\) | \(1~0~1~0\!\) | \(y\!\) | \(y\!\) | \(y\!\) | 
| \(f_{11}\!\) | \(f_{1011}\!\) | \(1~0~1~1\!\) | \((x~(y))\!\) | \(\text{not}~ x ~\text{without}~ y\!\) | \(x \Rightarrow y\!\) | 
| \(f_{12}\!\) | \(f_{1100}\!\) | \(1~1~0~0\!\) | \(x\!\) | \(x\!\) | \(x\!\) | 
| \(f_{13}\!\) | \(f_{1101}\!\) | \(1~1~0~1\!\) | \(((x)~y)\!\) | \(\text{not}~ y ~\text{without}~ x\!\) | \(x \Leftarrow y\!\) | 
| \(f_{14}\!\) | \(f_{1110}\!\) | \(1~1~1~0\!\) | \(((x)(y))\!\) | \(x ~\text{or}~ y\!\) | \(x \lor y\!\) | 
| \(f_{15}\!\) | \(f_{1111}\!\) | \(1~1~1~1\!\) | \(((~))\!\) | \(\text{true}\!\) | \(1\!\) | 
TeX Tables
\tableofcontents
\subsection{Table A1.  Propositional Forms on Two Variables}
Table A1 lists equivalent expressions for the Boolean functions of two variables in a number of different notational systems.
\begin{quote}\begin{tabular}{|c|c|c|c|c|c|c|}
\multicolumn{7}{c}{\textbf{Table A1.  Propositional Forms on Two Variables}} \\
\hline
$\mathcal{L}_1$ &
$\mathcal{L}_2$ &&
$\mathcal{L}_3$ &
$\mathcal{L}_4$ &
$\mathcal{L}_5$ &
$\mathcal{L}_6$ \\
\hline
& & $x =$ & 1 1 0 0 & & & \\
& & $y =$ & 1 0 1 0 & & & \\
\hline
$f_{0}$     &
$f_{0000}$  &&
0 0 0 0     &
$(~)$       &
$\operatorname{false}$ &
$0$         \\
$f_{1}$     &
$f_{0001}$  &&
0 0 0 1     &
$(x)(y)$    &
$\operatorname{neither}\ x\ \operatorname{nor}\ y$ &
$\lnot x \land \lnot y$ \\
$f_{2}$     &
$f_{0010}$  &&
0 0 1 0     &
$(x)\ y$    &
$y\ \operatorname{without}\ x$ &
$\lnot x \land y$ \\
$f_{3}$     &
$f_{0011}$  &&
0 0 1 1     &
$(x)$       &
$\operatorname{not}\ x$ &
$\lnot x$   \\
$f_{4}$     &
$f_{0100}$  &&
0 1 0 0     &
$x\ (y)$    &
$x\ \operatorname{without}\ y$ &
$x \land \lnot y$ \\
$f_{5}$     &
$f_{0101}$  &&
0 1 0 1     &
$(y)$       &
$\operatorname{not}\ y$ &
$\lnot y$   \\
$f_{6}$     &
$f_{0110}$  &&
0 1 1 0     &
$(x,\ y)$   &
$x\ \operatorname{not~equal~to}\ y$ &
$x \ne y$   \\
$f_{7}$     &
$f_{0111}$  &&
0 1 1 1     &
$(x\ y)$    &
$\operatorname{not~both}\ x\ \operatorname{and}\ y$ &
$\lnot x \lor \lnot y$ \\
\hline
$f_{8}$     &
$f_{1000}$  &&
1 0 0 0     &
$x\ y$      &
$x\ \operatorname{and}\ y$ &
$x \land y$ \\
$f_{9}$     &
$f_{1001}$  &&
1 0 0 1     &
$((x,\ y))$ &
$x\ \operatorname{equal~to}\ y$ &
$x = y$     \\
$f_{10}$    &
$f_{1010}$  &&
1 0 1 0     &
$y$         &
$y$         &
$y$         \\
$f_{11}$    &
$f_{1011}$  &&
1 0 1 1     &
$(x\ (y))$  &
$\operatorname{not}\ x\ \operatorname{without}\ y$ &
$x \Rightarrow y$ \\
$f_{12}$    &
$f_{1100}$  &&
1 1 0 0     &
$x$         &
$x$         &
$x$         \\
$f_{13}$    &
$f_{1101}$  &&
1 1 0 1     &
$((x)\ y)$  &
$\operatorname{not}\ y\ \operatorname{without}\ x$ &
$x \Leftarrow y$ \\
$f_{14}$    &
$f_{1110}$  &&
1 1 1 0     &
$((x)(y))$  &
$x\ \operatorname{or}\ y$ &
$x \lor y$  \\
$f_{15}$    &
$f_{1111}$  &&
1 1 1 1     &
$((~))$     &
$\operatorname{true}$ &
$1$         \\
\hline
\end{tabular}\end{quote}
\subsection{Table A2.  Propositional Forms on Two Variables}
Table A2 lists the sixteen Boolean functions of two variables in a different order, grouping them by structural similarity into seven natural classes.
\begin{quote}\begin{tabular}{|c|c|c|c|c|c|c|}
\multicolumn{7}{c}{\textbf{Table A2.  Propositional Forms on Two Variables}} \\
\hline
$\mathcal{L}_1$ &
$\mathcal{L}_2$ &&
$\mathcal{L}_3$ &
$\mathcal{L}_4$ &
$\mathcal{L}_5$ &
$\mathcal{L}_6$ \\
\hline
& & $x =$ & 1 1 0 0 & & & \\
& & $y =$ & 1 0 1 0 & & & \\
\hline
$f_{0}$     &
$f_{0000}$  &&
0 0 0 0     &
$(~)$       &
$\operatorname{false}$ &
$0$         \\
\hline
$f_{1}$     &
$f_{0001}$  &&
0 0 0 1     &
$(x)(y)$    &
$\operatorname{neither}\ x\ \operatorname{nor}\ y$ &
$\lnot x \land \lnot y$ \\
$f_{2}$     &
$f_{0010}$  &&
0 0 1 0     &
$(x)\ y$    &
$y\ \operatorname{without}\ x$ &
$\lnot x \land y$ \\
$f_{4}$     &
$f_{0100}$  &&
0 1 0 0     &
$x\ (y)$    &
$x\ \operatorname{without}\ y$ &
$x \land \lnot y$ \\
$f_{8}$     &
$f_{1000}$  &&
1 0 0 0     &
$x\ y$      &
$x\ \operatorname{and}\ y$ &
$x \land y$ \\
\hline
$f_{3}$     &
$f_{0011}$  &&
0 0 1 1     &
$(x)$       &
$\operatorname{not}\ x$ &
$\lnot x$   \\
$f_{12}$    &
$f_{1100}$  &&
1 1 0 0     &
$x$         &
$x$         &
$x$         \\
\hline
$f_{6}$     &
$f_{0110}$  &&
0 1 1 0     &
$(x,\ y)$   &
$x\ \operatorname{not~equal~to}\ y$ &
$x \ne y$   \\
$f_{9}$     &
$f_{1001}$  &&
1 0 0 1     &
$((x,\ y))$ &
$x\ \operatorname{equal~to}\ y$ &
$x = y$     \\
\hline
$f_{5}$     &
$f_{0101}$  &&
0 1 0 1     &
$(y)$       &
$\operatorname{not}\ y$ &
$\lnot y$   \\
$f_{10}$    &
$f_{1010}$  &&
1 0 1 0     &
$y$         &
$y$         &
$y$         \\
\hline
$f_{7}$     &
$f_{0111}$  &&
0 1 1 1     &
$(x\ y)$    &
$\operatorname{not~both}\ x\ \operatorname{and}\ y$ &
$\lnot x \lor \lnot y$ \\
$f_{11}$    &
$f_{1011}$  &&
1 0 1 1     &
$(x\ (y))$  &
$\operatorname{not}\ x\ \operatorname{without}\ y$ &
$x \Rightarrow y$ \\
$f_{13}$    &
$f_{1101}$  &&
1 1 0 1     &
$((x)\ y)$  &
$\operatorname{not}\ y\ \operatorname{without}\ x$ &
$x \Leftarrow y$ \\
$f_{14}$    &
$f_{1110}$  &&
1 1 1 0     &
$((x)(y))$  &
$x\ \operatorname{or}\ y$ &
$x \lor y$  \\
\hline
$f_{15}$    &
$f_{1111}$  &&
1 1 1 1     &
$((~))$     &
$\operatorname{true}$ &
$1$         \\
\hline
\end{tabular}\end{quote}
\subsection{Table A3.  $\operatorname{E}f$ Expanded Over Differential Features $\{ \operatorname{d}x, \operatorname{d}y \}$}
\begin{quote}\begin{tabular}{|c|c||c|c|c|c|}
\multicolumn{6}{c}{\textbf{Table A3.  $\operatorname{E}f$ Expanded Over Differential Features $\{ \operatorname{d}x, \operatorname{d}y \}$}} \\
\hline
& &
$\operatorname{T}_{11}$ &
$\operatorname{T}_{10}$ &
$\operatorname{T}_{01}$ &
$\operatorname{T}_{00}$ \\
& $f$ &
$\operatorname{E}f|_{\operatorname{d}x\ \operatorname{d}y}$   &
$\operatorname{E}f|_{\operatorname{d}x (\operatorname{d}y)}$  &
$\operatorname{E}f|_{(\operatorname{d}x) \operatorname{d}y}$  &
$\operatorname{E}f|_{(\operatorname{d}x)(\operatorname{d}y)}$ \\
\hline
$f_{0}$  & $(~)$       & $(~)$       & $(~)$       & $(~)$       & $(~)$       \\
\hline
$f_{1}$  & $(x)(y)$    & $x\ y$      & $x\ (y)$    & $(x)\ y$    & $(x)(y)$    \\
$f_{2}$  & $(x)\ y$    & $x\ (y)$    & $x\ y$      & $(x)(y)$    & $(x)\ y$    \\
$f_{4}$  & $x\ (y)$    & $(x)\ y$    & $(x)(y)$    & $x\ y$      & $x\ (y)$    \\
$f_{8}$  & $x\ y$      & $(x)(y)$    & $(x)\ y$    & $x\ (y)$    & $x\ y$      \\
\hline
$f_{3}$  & $(x)$       & $x$         & $x$         & $(x)$       & $(x)$       \\
$f_{12}$ & $x$         & $(x)$       & $(x)$       & $x$         & $x$         \\
\hline
$f_{6}$  & $(x,\ y)$   & $(x,\ y)$   & $((x,\ y))$ & $((x,\ y))$ & $(x,\ y)$   \\
$f_{9}$  & $((x,\ y))$ & $((x,\ y))$ & $(x,\ y)$   & $(x,\ y)$   & $((x,\ y))$ \\
\hline
$f_{5}$  & $(y)$       & $y$         & $(y)$       & $y$         & $(y)$       \\
$f_{10}$ & $y$         & $(y)$       & $y$         & $(y)$       & $y$         \\
\hline
$f_{7}$  & $(x\ y)$    & $((x)(y))$  & $((x)\ y)$  & $(x\ (y))$  & $(x\ y)$    \\
$f_{11}$ & $(x\ (y))$  & $((x)\ y)$  & $((x)(y))$  & $(x\ y)$    & $(x\ (y))$  \\
$f_{13}$ & $((x)\ y)$  & $(x\ (y))$  & $(x\ y)$    & $((x)(y))$  & $((x)\ y)$  \\
$f_{14}$ & $((x)(y))$  & $(x\ y)$    & $(x\ (y))$  & $((x)\ y)$  & $((x)(y))$  \\
\hline
$f_{15}$ & $((~))$     & $((~))$     & $((~))$     & $((~))$     & $((~))$     \\
\hline
\multicolumn{2}{|c||}{\PMlinkname{Fixed Point}{FixedPoint} Total:} & 4 & 4 & 4 & 16 \\
\hline
\end{tabular}\end{quote}
\subsection{Table A4.  $\operatorname{D}f$ Expanded Over Differential Features $\{ \operatorname{d}x, \operatorname{d}y \}$}
\begin{quote}\begin{tabular}{|c|c||c|c|c|c|}
\multicolumn{6}{c}{\textbf{Table A4.  $\operatorname{D}f$ Expanded Over Differential Features $\{ \operatorname{d}x, \operatorname{d}y \}$}} \\
\hline
& $f$ &
$\operatorname{D}f|_{\operatorname{d}x\ \operatorname{d}y}$   &
$\operatorname{D}f|_{\operatorname{d}x (\operatorname{d}y)}$  &
$\operatorname{D}f|_{(\operatorname{d}x) \operatorname{d}y}$  &
$\operatorname{D}f|_{(\operatorname{d}x)(\operatorname{d}y)}$ \\
\hline
$f_{0}$  & $(~)$       & $(~)$       & $(~)$   & $(~)$   & $(~)$ \\
\hline
$f_{1}$  & $(x)(y)$    & $((x,\ y))$ & $(y)$   & $(x)$   & $(~)$ \\
$f_{2}$  & $(x)\ y$    & $(x,\ y)$   & $y$     & $(x)$   & $(~)$ \\
$f_{4}$  & $x\ (y)$    & $(x,\ y)$   & $(y)$   & $x$     & $(~)$ \\
$f_{8}$  & $x\ y$      & $((x,\ y))$ & $y$     & $x$     & $(~)$ \\
\hline
$f_{3}$  & $(x)$       & $((~))$     & $((~))$ & $(~)$   & $(~)$ \\
$f_{12}$ & $x$         & $((~))$     & $((~))$ & $(~)$   & $(~)$ \\
\hline
$f_{6}$  & $(x,\ y)$   & $(~)$       & $((~))$ & $((~))$ & $(~)$ \\
$f_{9}$  & $((x,\ y))$ & $(~)$       & $((~))$ & $((~))$ & $(~)$ \\
\hline
$f_{5}$  & $(y)$       & $((~))$     & $(~)$   & $((~))$ & $(~)$ \\
$f_{10}$ & $y$         & $((~))$     & $(~)$   & $((~))$ & $(~)$ \\
\hline
$f_{7}$  & $(x\ y)$    & $((x,\ y))$ & $y$     & $x$     & $(~)$ \\
$f_{11}$ & $(x\ (y))$  & $(x,\ y)$   & $(y)$   & $x$     & $(~)$ \\
$f_{13}$ & $((x)\ y)$  & $(x,\ y)$   & $y$     & $(x)$   & $(~)$ \\
$f_{14}$ & $((x)(y))$  & $((x,\ y))$ & $(y)$   & $(x)$   & $(~)$ \\
\hline
$f_{15}$ & $((~))$     & $(~)$       & $(~)$   & $(~)$   & $(~)$ \\
\hline
\end{tabular}\end{quote}
\subsection{Table A5.  $\operatorname{E}f$ Expanded Over Ordinary Features $\{ x, y \}$}
\begin{quote}\begin{tabular}{|c|c||c|c|c|c|}
\multicolumn{6}{c}{\textbf{Table A5.  $\operatorname{E}f$ Expanded Over Ordinary Features $\{ x, y \}$}} \\
\hline
& $f$ &
$\operatorname{E}f|_{x\ y}$   &
$\operatorname{E}f|_{x (y)}$  &
$\operatorname{E}f|_{(x) y}$  &
$\operatorname{E}f|_{(x)(y)}$ \\
\hline
$f_{0}$ &
$(~)$   &
$(~)$   &
$(~)$   &
$(~)$   &
$(~)$   \\
\hline
$f_{1}$  &
$(x)(y)$ &
$\operatorname{d}x\ \operatorname{d}y$   &
$\operatorname{d}x\ (\operatorname{d}y)$ &
$(\operatorname{d}x)\ \operatorname{d}y$ &
$(\operatorname{d}x)(\operatorname{d}y)$ \\
$f_{2}$  &
$(x)\ y$ &
$\operatorname{d}x\ (\operatorname{d}y)$ &
$\operatorname{d}x\ \operatorname{d}y$   &
$(\operatorname{d}x)(\operatorname{d}y)$ &
$(\operatorname{d}x)\ \operatorname{d}y$ \\
$f_{4}$  &
$x\ (y)$ &
$(\operatorname{d}x)\ \operatorname{d}y$ &
$(\operatorname{d}x)(\operatorname{d}y)$ &
$\operatorname{d}x\ \operatorname{d}y$   &
$\operatorname{d}x\ (\operatorname{d}y)$ \\
$f_{8}$ &
$x\ y$  &
$(\operatorname{d}x)(\operatorname{d}y)$ &
$(\operatorname{d}x)\ \operatorname{d}y$ &
$\operatorname{d}x\ (\operatorname{d}y)$ &
$\operatorname{d}x\ \operatorname{d}y$   \\
\hline
$f_{3}$ &
$(x)$   &
$\operatorname{d}x$   &
$\operatorname{d}x$   &
$(\operatorname{d}x)$ &
$(\operatorname{d}x)$ \\
$f_{12}$ &
$x$      &
$(\operatorname{d}x)$ &
$(\operatorname{d}x)$ &
$\operatorname{d}x$   &
$\operatorname{d}x$   \\
\hline
$f_{6}$   &
$(x,\ y)$ &
$(\operatorname{d}x,\ \operatorname{d}y)$   &
$((\operatorname{d}x,\ \operatorname{d}y))$ &
$((\operatorname{d}x,\ \operatorname{d}y))$ &
$(\operatorname{d}x,\ \operatorname{d}y)$   \\
$f_{9}$     &
$((x,\ y))$ &
$((\operatorname{d}x,\ \operatorname{d}y))$ &
$(\operatorname{d}x,\ \operatorname{d}y)$   &
$(\operatorname{d}x,\ \operatorname{d}y)$   &
$((\operatorname{d}x,\ \operatorname{d}y))$ \\
\hline
$f_{5}$ &
$(y)$   &
$\operatorname{d}y$   &
$(\operatorname{d}y)$ &
$\operatorname{d}y$   &
$(\operatorname{d}y)$ \\
$f_{10}$ &
$y$      &
$(\operatorname{d}y)$ &
$\operatorname{d}y$   &
$(\operatorname{d}y)$ &
$\operatorname{d}y$   \\
\hline
$f_{7}$  &
$(x\ y)$ &
$((\operatorname{d}x)(\operatorname{d}y))$ &
$((\operatorname{d}x)\ \operatorname{d}y)$ &
$(\operatorname{d}x\ (\operatorname{d}y))$ &
$(\operatorname{d}x\ \operatorname{d}y)$   \\
$f_{11}$   &
$(x\ (y))$ &
$((\operatorname{d}x)\ \operatorname{d}y)$ &
$((\operatorname{d}x)(\operatorname{d}y))$ &
$(\operatorname{d}x\ \operatorname{d}y)$   &
$(\operatorname{d}x\ (\operatorname{d}y))$ \\
$f_{13}$   &
$((x)\ y)$ &
$(\operatorname{d}x\ (\operatorname{d}y))$ &
$(\operatorname{d}x\ \operatorname{d}y)$   &
$((\operatorname{d}x)(\operatorname{d}y))$ &
$((\operatorname{d}x)\ \operatorname{d}y)$ \\
$f_{14}$   &
$((x)(y))$ &
$(\operatorname{d}x\ \operatorname{d}y)$   &
$(\operatorname{d}x\ (\operatorname{d}y))$ &
$((\operatorname{d}x)\ \operatorname{d}y)$ &
$((\operatorname{d}x)(\operatorname{d}y))$ \\
\hline
$f_{15}$ &
$((~))$  &
$((~))$  &
$((~))$  &
$((~))$  &
$((~))$  \\
\hline
\end{tabular}\end{quote}
\subsection{Table A6.  $\operatorname{D}f$ Expanded Over Ordinary Features $\{ x, y \}$}
\begin{quote}\begin{tabular}{|c|c||c|c|c|c|}
\multicolumn{6}{c}{\textbf{Table A6.  $\operatorname{D}f$ Expanded Over Ordinary Features $\{ x, y \}$}} \\
\hline
& $f$ &
$\operatorname{D}f|_{x\ y}$   &
$\operatorname{D}f|_{x (y)}$  &
$\operatorname{D}f|_{(x) y}$  &
$\operatorname{D}f|_{(x)(y)}$ \\
\hline
$f_{0}$ &
$(~)$   &
$(~)$   &
$(~)$   &
$(~)$   &
$(~)$   \\
\hline
$f_{1}$  &
$(x)(y)$ &
$\operatorname{d}x\ \operatorname{d}y$     &
$\operatorname{d}x\ (\operatorname{d}y)$   &
$(\operatorname{d}x)\ \operatorname{d}y$   &
$((\operatorname{d}x)(\operatorname{d}y))$ \\
$f_{2}$  &
$(x)\ y$ &
$\operatorname{d}x\ (\operatorname{d}y)$   &
$\operatorname{d}x\ \operatorname{d}y$     &
$((\operatorname{d}x)(\operatorname{d}y))$ &
$(\operatorname{d}x)\ \operatorname{d}y$   \\
$f_{4}$  &
$x\ (y)$ &
$(\operatorname{d}x)\ \operatorname{d}y$   &
$((\operatorname{d}x)(\operatorname{d}y))$ &
$\operatorname{d}x\ \operatorname{d}y$     &
$\operatorname{d}x\ (\operatorname{d}y)$   \\
$f_{8}$ &
$x\ y$  &
$((\operatorname{d}x)(\operatorname{d}y))$ &
$(\operatorname{d}x)\ \operatorname{d}y$   &
$\operatorname{d}x\ (\operatorname{d}y)$   &
$\operatorname{d}x\ \operatorname{d}y$     \\
\hline
$f_{3}$ &
$(x)$   &
$\operatorname{d}x$ &
$\operatorname{d}x$ &
$\operatorname{d}x$ &
$\operatorname{d}x$ \\
$f_{12}$ &
$x$      &
$\operatorname{d}x$ &
$\operatorname{d}x$ &
$\operatorname{d}x$ &
$\operatorname{d}x$ \\
\hline
$f_{6}$   &
$(x,\ y)$ &
$(\operatorname{d}x,\ \operatorname{d}y)$ &
$(\operatorname{d}x,\ \operatorname{d}y)$ &
$(\operatorname{d}x,\ \operatorname{d}y)$ &
$(\operatorname{d}x,\ \operatorname{d}y)$ \\
$f_{9}$     &
$((x,\ y))$ &
$(\operatorname{d}x,\ \operatorname{d}y)$ &
$(\operatorname{d}x,\ \operatorname{d}y)$ &
$(\operatorname{d}x,\ \operatorname{d}y)$ &
$(\operatorname{d}x,\ \operatorname{d}y)$ \\
\hline
$f_{5}$ &
$(y)$   &
$\operatorname{d}y$ &
$\operatorname{d}y$ &
$\operatorname{d}y$ &
$\operatorname{d}y$ \\
$f_{10}$ &
$y$      &
$\operatorname{d}y$ &
$\operatorname{d}y$ &
$\operatorname{d}y$ &
$\operatorname{d}y$ \\
\hline
$f_{7}$  &
$(x\ y)$ &
$((\operatorname{d}x)(\operatorname{d}y))$ &
$(\operatorname{d}x)\ \operatorname{d}y$   &
$\operatorname{d}x\ (\operatorname{d}y)$   &
$\operatorname{d}x\ \operatorname{d}y$     \\
$f_{11}$   &
$(x\ (y))$ &
$(\operatorname{d}x)\ \operatorname{d}y$   &
$((\operatorname{d}x)(\operatorname{d}y))$ &
$\operatorname{d}x\ \operatorname{d}y$     &
$\operatorname{d}x\ (\operatorname{d}y)$   \\
$f_{13}$   &
$((x)\ y)$ &
$\operatorname{d}x\ (\operatorname{d}y)$   &
$\operatorname{d}x\ \operatorname{d}y$     &
$((\operatorname{d}x)(\operatorname{d}y))$ &
$(\operatorname{d}x)\ \operatorname{d}y$   \\
$f_{14}$   &
$((x)(y))$ &
$\operatorname{d}x\ \operatorname{d}y$     &
$\operatorname{d}x\ (\operatorname{d}y)$   &
$(\operatorname{d}x)\ \operatorname{d}y$   &
$((\operatorname{d}x)(\operatorname{d}y))$ \\
\hline
$f_{15}$ &
$((~))$  &
$(~)$    &
$(~)$    &
$(~)$    &
$(~)$    \\
\hline
\end{tabular}\end{quote}
Inquiry Driven Systems
Table 1.  Sign Relation of Interpreter A
Table 1.  Sign Relation of Interpreter A
o---------------o---------------o---------------o
| Object        | Sign          | Interpretant  |
o---------------o---------------o---------------o
| A             | "A"           | "A"           |
| A             | "A"           | "i"           |
| A             | "i"           | "A"           |
| A             | "i"           | "i"           |
| B             | "B"           | "B"           |
| B             | "B"           | "u"           |
| B             | "u"           | "B"           |
| B             | "u"           | "u"           |
o---------------o---------------o---------------o
Table 1.  Sign Relation of Interpreter A
| Object | Sign | Interpretant | 
| A | "A" | "A" | 
| A | "A" | "i" | 
| A | "i" | "A" | 
| A | "i" | "i" | 
| B | "B" | "B" | 
| B | "B" | "u" | 
| B | "u" | "B" | 
| B | "u" | "u" | 
Table 2.  Sign Relation of Interpreter B
Table 2.  Sign Relation of Interpreter B
o---------------o---------------o---------------o
| Object        | Sign          | Interpretant  |
o---------------o---------------o---------------o
| A             | "A"           | "A"           |
| A             | "A"           | "u"           |
| A             | "u"           | "A"           |
| A             | "u"           | "u"           |
| B             | "B"           | "B"           |
| B             | "B"           | "i"           |
| B             | "i"           | "B"           |
| B             | "i"           | "i"           |
o---------------o---------------o---------------o
Table 2.  Sign Relation of Interpreter B
| Object | Sign | Interpretant | 
| A | "A" | "A" | 
| A | "A" | "u" | 
| A | "u" | "A" | 
| A | "u" | "u" | 
| B | "B" | "B" | 
| B | "B" | "i" | 
| B | "i" | "B" | 
| B | "i" | "i" | 
Table 3.  Semiotic Partition of Interpreter A
Table 3.  A's Semiotic Partition
o-------------------------------o
|      "A"             "i"      |
o-------------------------------o
|      "u"             "B"      |
o-------------------------------o
Table 3.  Semiotic Partition of Interpreter A
|  | 
|  | 
Table 4.  Semiotic Partition of Interpreter B
Table 4.  B's Semiotic Partition
o---------------o---------------o
|      "A"      |      "i"      |
|               |               |
|      "u"      |      "B"      |
o---------------o---------------o
Table 4.  Semiotic Partition of Interpreter B
|  |  | 
Table 5.  Alignments of Capacities
Table 5.  Alignments of Capacities
o-------------------o-----------------------------o
|      Formal       |          Formative          |
o-------------------o-----------------------------o
|     Objective     |        Instrumental         |
|      Passive      |           Active            |
o-------------------o--------------o--------------o
|     Afforded      |  Possessed   |  Exercised   |
o-------------------o--------------o--------------o
Table 6.  Alignments of Capacities in Aristotle
Table 6.  Alignments of Capacities in Aristotle
o-------------------o-----------------------------o
|      Matter       |            Form             |
o-------------------o-----------------------------o
|   Potentiality    |          Actuality          |
|    Receptivity    |  Possession  |   Exercise   |
|       Life        |    Sleep     |    Waking    |
|        Wax        |         Impression          |
|        Axe        |    Edge      |   Cutting    |
|        Eye        |   Vision     |    Seeing    |
|       Body        |            Soul             |
o-------------------o-----------------------------o
|       Ship?       |           Sailor?           |
o-------------------o-----------------------------o
Table 7.  Synthesis of Alignments
Table 7.  Synthesis of Alignments
o-------------------o-----------------------------o
|      Formal       |          Formative          |
o-------------------o-----------------------------o
|     Objective     |        Instrumental         |
|      Passive      |           Active            |
|     Afforded      |  Possessed   |  Exercised   |
|      To Hold      |   To Have    |    To Use    |
|    Receptivity    |  Possession  |   Exercise   |
|   Potentiality    |          Actuality          |
|      Matter       |            Form             |
o-------------------o-----------------------------o
Table 8.  Boolean Product
Table 8.  Boolean Product
o---------o---------o---------o
|   %*%   %   %0%   |   %1%   |
o=========o=========o=========o
|   %0%   %   %0%   |   %0%   |
o---------o---------o---------o
|   %1%   %   %0%   |   %1%   |
o---------o---------o---------o
Table 9.  Boolean Sum
Table 9.  Boolean Sum
o---------o---------o---------o
|   %+%   %   %0%   |   %1%   |
o=========o=========o=========o
|   %0%   %   %0%   |   %1%   |
o---------o---------o---------o
|   %1%   %   %1%   |   %0%   |
o---------o---------o---------o
Logical Tables
Table Templates
Table 1.  Two Variable Template
|  |  |  |  |  | 
|  | 
| 0 0 0 0 |  
| 0 0 0 1 |  
| 0 0 1 0 |  
| 0 0 1 1 |  
| 0 1 0 0 |  
| 0 1 0 1 |  
| 0 1 1 0 |  
| 0 1 1 1 |  |  |  |  | 
| 
| f8 |  
| f9 |  
| f10 |  
| f11 |  
| f12 |  
| f13 |  
| f14 |  
| f15 |  | 
| 1 0 0 0 |  
| 1 0 0 1 |  
| 1 0 1 0 |  
| 1 0 1 1 |  
| 1 1 0 0 |  
| 1 1 0 1 |  
| 1 1 1 0 |  
| 1 1 1 1 |  | 
| f8 |  
| f9 |  
| f10 |  
| f11 |  
| f12 |  
| f13 |  
| f14 |  
| f15 |  | 
| f8 |  
| f9 |  
| f10 |  
| f11 |  
| f12 |  
| f13 |  
| f14 |  
| f15 |  | 
| f8 |  
| f9 |  
| f10 |  
| f11 |  
| f12 |  
| f13 |  
| f14 |  
| f15 |  | 
Table 2.  Two Variable Template
|  |  |  |  |  | 
|  | 
| 0000 |  
| 0001 |  
| 0010 |  
| 0011 |  
| 0100 |  
| 0101 |  
| 0110 |  
| 0111 |  | 
| () |  
| (u)(v) |  
| (u) v |  
| (u) |  
| u (v) |  
| (v) |  
| (u, v) |  
| (u  v) |  |  |  | 
| 
| f8 |  
| f9 |  
| f10 |  
| f11 |  
| f12 |  
| f13 |  
| f14 |  
| f15 |  | 
| 1000 |  
| 1001 |  
| 1010 |  
| 1011 |  
| 1100 |  
| 1101 |  
| 1110 |  
| 1111 |  | 
| u  v |  
| ((u, v)) |  
| v |  
| (u (v)) |  
| u |  
| ((u) v) |  
| ((u)(v)) |  
| (()) |  | 
| f8 |  
| f9 |  
| f10 |  
| f11 |  
| f12 |  
| f13 |  
| f14 |  
| f15 |  | 
| f8 |  
| f9 |  
| f10 |  
| f11 |  
| f12 |  
| f13 |  
| f14 |  
| f15 |  | 
Higher Order Propositions
Table 7.  Higher Order Propositions (n = 1)
| \ x | 1 0 | F | m | m | m | m | m | m | m | m | m | m | m | m | m | m | m | m | 
| F \ |  |  | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 
| F0 | 0 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| F1 | 0 1 | (x) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| F2 | 1 0 | x | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| F3 | 1 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
Table 8.  Interpretive Categories for Higher Order Propositions (n = 1)
| Measure | Happening | Exactness | Existence | Linearity | Uniformity | Information | 
| m0 | nothing happens |  |  |  |  |  | 
| m1 |  | just false | nothing exists |  |  |  | 
| m2 |  | just not x |  |  |  |  | 
| m3 |  |  | nothing is x |  |  |  | 
| m4 |  | just x |  |  |  |  | 
| m5 |  |  | everything is x | F is linear |  |  | 
| m6 |  |  |  |  | F is not uniform | F is informed | 
| m7 |  | not just true |  |  |  |  | 
| m8 |  | just true |  |  |  |  | 
| m9 |  |  |  |  | F is uniform | F is not informed | 
| m10 |  |  | something is not x | F is not linear |  |  | 
| m11 |  | not just x |  |  |  |  | 
| m12 |  |  | something is x |  |  |  | 
| m13 |  | not just not x |  |  |  |  | 
| m14 |  | not just false | something exists |  |  |  | 
| m15 | anything happens |  |  |  |  |  | 
Table 9.  Higher Order Propositions (n = 2)
| x : | 1100 | f | m | m | m | m | m | m | m | m | m | m | m | m | m | m | m | m | m | m | m | m | m | m | m | m | 
| y : | 1010 |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 
| f0 | 0000 | ( ) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| f1 | 0001 | (x)(y) |  |  | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| f2 | 0010 | (x) y |  |  |  |  | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| f3 | 0011 | (x) |  |  |  |  |  |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| f4 | 0100 | x (y) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| f5 | 0101 | (y) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| f6 | 0110 | (x, y) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| f7 | 0111 | (x  y) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| f8 | 1000 | x  y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| f9 | 1001 | ((x, y)) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| f10 | 1010 | y |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| f11 | 1011 | (x (y)) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| f12 | 1100 | x |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| f13 | 1101 | ((x) y) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| f14 | 1110 | ((x)(y)) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| f15 | 1111 | (( )) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
Table 10.  Qualifiers of Implication Ordering:  αi f = Υ(fi ⇒ f)
| x : | 1100 | f | α | α | α | α | α | α | α | α | α | α | α | α | α | α | α | α | 
| y : | 1010 |  | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 
| f0 | 0000 | ( ) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 
| f1 | 0001 | (x)(y) |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 | 
| f2 | 0010 | (x) y |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 1 | 
| f3 | 0011 | (x) |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 | 1 | 1 | 
| f4 | 0100 | x (y) |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  | 1 | 
| f5 | 0101 | (y) |  |  |  |  |  |  |  |  |  |  | 1 | 1 |  |  | 1 | 1 | 
| f6 | 0110 | (x, y) |  |  |  |  |  |  |  |  |  | 1 |  | 1 |  | 1 |  | 1 | 
| f7 | 0111 | (x  y) |  |  |  |  |  |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| f8 | 1000 | x  y |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  | 1 | 
| f9 | 1001 | ((x, y)) |  |  |  |  |  |  | 1 | 1 |  |  |  |  |  |  | 1 | 1 | 
| f10 | 1010 | y |  |  |  |  |  | 1 |  | 1 |  |  |  |  |  | 1 |  | 1 | 
| f11 | 1011 | (x (y)) |  |  |  |  | 1 | 1 | 1 | 1 |  |  |  |  | 1 | 1 | 1 | 1 | 
| f12 | 1100 | x |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 | 
| f13 | 1101 | ((x) y) |  |  | 1 | 1 |  |  | 1 | 1 |  |  | 1 | 1 |  |  | 1 | 1 | 
| f14 | 1110 | ((x)(y)) |  | 1 |  | 1 |  | 1 |  | 1 |  | 1 |  | 1 |  | 1 |  | 1 | 
| f15 | 1111 | (( )) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
Table 11.  Qualifiers of Implication Ordering:  βi f = Υ(f ⇒ fi)
| x : | 1100 | f | β | β | β | β | β | β | β | β | β | β | β | β | β | β | β | β | 
| y : | 1010 |  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 
| f0 | 0000 | ( ) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| f1 | 0001 | (x)(y) |  | 1 |  | 1 |  | 1 |  | 1 |  | 1 |  | 1 |  | 1 |  | 1 | 
| f2 | 0010 | (x) y |  |  | 1 | 1 |  |  | 1 | 1 |  |  | 1 | 1 |  |  | 1 | 1 | 
| f3 | 0011 | (x) |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 |  |  |  | 1 | 
| f4 | 0100 | x (y) |  |  |  |  | 1 | 1 | 1 | 1 |  |  |  |  | 1 | 1 | 1 | 1 | 
| f5 | 0101 | (y) |  |  |  |  |  | 1 |  | 1 |  |  |  |  |  | 1 |  | 1 | 
| f6 | 0110 | (x, y) |  |  |  |  |  |  | 1 | 1 |  |  |  |  |  |  | 1 | 1 | 
| f7 | 0111 | (x  y) |  |  |  |  |  |  |  | 1 |  |  |  |  |  |  |  | 1 | 
| f8 | 1000 | x  y |  |  |  |  |  |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| f9 | 1001 | ((x, y)) |  |  |  |  |  |  |  |  |  | 1 |  | 1 |  | 1 |  | 1 | 
| f10 | 1010 | y |  |  |  |  |  |  |  |  |  |  | 1 | 1 |  |  | 1 | 1 | 
| f11 | 1011 | (x (y)) |  |  |  |  |  |  |  |  |  |  |  | 1 |  |  |  | 1 | 
| f12 | 1100 | x |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 | 1 | 1 | 
| f13 | 1101 | ((x) y) |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 |  | 1 | 
| f14 | 1110 | ((x)(y)) |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 | 
| f15 | 1111 | (( )) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 
Table 13.  Syllogistic Premisses as Higher Order Indicator Functions
| A | Universal Affirmative | All | x | is | y | Indicator of " x (y)" = 0 | 
| E | Universal Negative | All | x | is | (y) | Indicator of " x  y " = 0 | 
| I | Particular Affirmative | Some | x | is | y | Indicator of " x  y " = 1 | 
| O | Particular Negative | Some | x | is | (y) | Indicator of " x (y)" = 1 | 
Table 14.  Relation of Quantifiers to Higher Order Propositions
| Mnemonic | Category | Classical Form | Alternate Form | Symmetric Form | Operator | 
| E Exclusive
 | Universal Negative
 | All x is (y) |  | No x is y | (L11) | 
| A Absolute
 | Universal Affirmative
 | All x is y |  | No x is (y) | (L10) | 
|  |  | All y is x | No y is (x) | No (x) is y | (L01) | 
|  |  | All (y) is x | No (y) is (x) | No (x) is (y) | (L00) | 
|  |  | Some (x) is (y) |  | Some (x) is (y) | L00 | 
|  |  | Some (x) is y |  | Some (x) is y | L01 | 
| O Obtrusive
 | Particular Negative
 | Some x is (y) |  | Some x is (y) | L10 | 
| I Indefinite
 | Particular Affirmative
 | Some x is y |  | Some x is y | L11 | 
Table 15.  Simple Qualifiers of Propositions (n = 2)
| x : | 1100 | f | (L11) | (L10) | (L01) | (L00) | L00 | L01 | L10 | L11 | 
| y : | 1010 |  | no  x is  y
 | no  x is (y)
 | no (x) is  y
 | no (x) is (y)
 | some (x) is (y)
 | some (x) is  y
 | some  x is (y)
 | some  x is  y
 | 
| f0 | 0000 | ( ) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 
| f1 | 0001 | (x)(y) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 
| f2 | 0010 | (x) y | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 
| f3 | 0011 | (x) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 
| f4 | 0100 | x (y) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 
| f5 | 0101 | (y) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| f6 | 0110 | (x, y) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 
| f7 | 0111 | (x  y) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 
| f8 | 1000 | x  y | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 
| f9 | 1001 | ((x, y)) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 
| f10 | 1010 | y | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| f11 | 1011 | (x (y)) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 
| f12 | 1100 | x | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| f13 | 1101 | ((x) y) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 
| f14 | 1110 | ((x)(y)) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 
| f15 | 1111 | (( )) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
Table 7.  Higher Order Propositions (n = 1)
o------o-----o-----o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o---o
|  \ x | 1 0 |  F  |m |m |m |m |m |m |m |m |m |m |m |m |m |m |m |m  |
| F \  |     |     |00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15 |
o------o-----o-----o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o---o
|      |     |     |                                                |
| F_0  | 0 0 |  0  | 0  1  0  1  0  1  0  1  0  1  0  1  0  1  0  1 |
|      |     |     |                                                |
| F_1  | 0 1 | (x) | 0  0  1  1  0  0  1  1  0  0  1  1  0  0  1  1 |
|      |     |     |                                                |
| F_2  | 1 0 |  x  | 0  0  0  0  1  1  1  1  0  0  0  0  1  1  1  1 |
|      |     |     |                                                |
| F_3  | 1 1 |  1  | 0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1 |
|      |     |     |                                                |
o------o-----o-----o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o---o
Table 8.  Interpretive Categories for Higher Order Propositions (n = 1)
o-------o----------o------------o------------o----------o----------o-----------o
|Measure| Happening| Exactness  | Existence  | Linearity|Uniformity|Information|
o-------o----------o------------o------------o----------o----------o-----------o
| m_0   | nothing  |            |            |          |          |           |
|       | happens  |            |            |          |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_1   |          |            | nothing    |          |          |           |
|       |          | just false | exists     |          |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_2   |          |            |            |          |          |           |
|       |          | just not x |            |          |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_3   |          |            | nothing    |          |          |           |
|       |          |            | is x       |          |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_4   |          |            |            |          |          |           |
|       |          | just x     |            |          |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_5   |          |            | everything | F is     |          |           |
|       |          |            | is x       | linear   |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_6   |          |            |            |          | F is not | F is      |
|       |          |            |            |          | uniform  | informed  |
o-------o----------o------------o------------o----------o----------o-----------o
| m_7   |          | not        |            |          |          |           |
|       |          | just true  |            |          |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_8   |          |            |            |          |          |           |
|       |          | just true  |            |          |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_9   |          |            |            |          | F is     | F is not  |
|       |          |            |            |          | uniform  | informed  |
o-------o----------o------------o------------o----------o----------o-----------o
| m_10  |          |            | something  | F is not |          |           |
|       |          |            | is not x   | linear   |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_11  |          | not        |            |          |          |           |
|       |          | just x     |            |          |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_12  |          |            | something  |          |          |           |
|       |          |            | is x       |          |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_13  |          | not        |            |          |          |           |
|       |          | just not x |            |          |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_14  |          | not        | something  |          |          |           |
|       |          | just false | exists     |          |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
| m_15  | anything |            |            |          |          |           |
|       | happens  |            |            |          |          |           |
o-------o----------o------------o------------o----------o----------o-----------o
Table 9.  Higher Order Propositions (n = 2)
o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
|  | x | 1100 |    f     |m|m|m|m|m|m|m|m|m|m|m|m|m|m|m|m|.|
|  | y | 1010 |          |0|0|0|0|0|0|0|0|0|0|1|1|1|1|1|1|.|
| f \  |      |          |0|1|2|3|4|5|6|7|8|9|0|1|2|3|4|5|.|
o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
|      |      |          |                                 |
| f_0  | 0000 |    ()    |0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1  |
|      |      |          |                                 |
| f_1  | 0001 |  (x)(y)  |    1 1 0 0 1 1 0 0 1 1 0 0 1 1  |
|      |      |          |                                 |
| f_2  | 0010 |  (x) y   |        1 1 1 1 0 0 0 0 1 1 1 1  |
|      |      |          |                                 |
| f_3  | 0011 |  (x)     |                1 1 1 1 1 1 1 1  |
|      |      |          |                                 |
| f_4  | 0100 |   x (y)  |                                 |
|      |      |          |                                 |
| f_5  | 0101 |     (y)  |                                 |
|      |      |          |                                 |
| f_6  | 0110 |  (x, y)  |                                 |
|      |      |          |                                 |
| f_7  | 0111 |  (x  y)  |                                 |
|      |      |          |                                 |
o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
|      |      |          |                                 |
| f_8  | 1000 |   x  y   |                                 |
|      |      |          |                                 |
| f_9  | 1001 | ((x, y)) |                                 |
|      |      |          |                                 |
| f_10 | 1010 |      y   |                                 |
|      |      |          |                                 |
| f_11 | 1011 |  (x (y)) |                                 |
|      |      |          |                                 |
| f_12 | 1100 |   x      |                                 |
|      |      |          |                                 |
| f_13 | 1101 | ((x) y)  |                                 |
|      |      |          |                                 |
| f_14 | 1110 | ((x)(y)) |                                 |
|      |      |          |                                 |
| f_15 | 1111 |   (())   |                                 |
|      |      |          |                                 |
o------o------o----------o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o-o
Table 10.  Qualifiers of Implication Ordering:  !a!_i f  =  !Y!(f_i => f)
o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
|  | x | 1100 |    f     |a |a |a |a |a |a |a |a |a |a |a |a |a |a |a |a |
|  | y | 1010 |          |1 |1 |1 |1 |1 |1 |0 |0 |0 |0 |0 |0 |0 |0 |0 |0 |
| f \  |      |          |5 |4 |3 |2 |1 |0 |9 |8 |7 |6 |5 |4 |3 |2 |1 |0 |
o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
|      |      |          |                                               |
| f_0  | 0000 |    ()    |                                             1 |
|      |      |          |                                               |
| f_1  | 0001 |  (x)(y)  |                                          1  1 |
|      |      |          |                                               |
| f_2  | 0010 |  (x) y   |                                       1     1 |
|      |      |          |                                               |
| f_3  | 0011 |  (x)     |                                    1  1  1  1 |
|      |      |          |                                               |
| f_4  | 0100 |   x (y)  |                                 1           1 |
|      |      |          |                                               |
| f_5  | 0101 |     (y)  |                              1  1        1  1 |
|      |      |          |                                               |
| f_6  | 0110 |  (x, y)  |                           1     1     1     1 |
|      |      |          |                                               |
| f_7  | 0111 |  (x  y)  |                        1  1  1  1  1  1  1  1 |
|      |      |          |                                               |
| f_8  | 1000 |   x  y   |                     1                       1 |
|      |      |          |                                               |
| f_9  | 1001 | ((x, y)) |                  1  1                    1  1 |
|      |      |          |                                               |
| f_10 | 1010 |      y   |               1     1                 1     1 |
|      |      |          |                                               |
| f_11 | 1011 |  (x (y)) |            1  1  1  1              1  1  1  1 |
|      |      |          |                                               |
| f_12 | 1100 |   x      |         1           1           1           1 |
|      |      |          |                                               |
| f_13 | 1101 | ((x) y)  |      1  1        1  1        1  1        1  1 |
|      |      |          |                                               |
| f_14 | 1110 | ((x)(y)) |   1     1     1     1     1     1     1     1 |
|      |      |          |                                               |
| f_15 | 1111 |   (())   |1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 |
|      |      |          |                                               |
o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
Table 11.  Qualifiers of Implication Ordering:  !b!_i f  =  !Y!(f => f_i)
o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
|  | x | 1100 |    f     |b |b |b |b |b |b |b |b |b |b |b |b |b |b |b |b |
|  | y | 1010 |          |0 |0 |0 |0 |0 |0 |0 |0 |0 |0 |1 |1 |1 |1 |1 |1 |
| f \  |      |          |0 |1 |2 |3 |4 |5 |6 |7 |8 |9 |0 |1 |2 |3 |4 |5 |
o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
|      |      |          |                                               |
| f_0  | 0000 |    ()    |1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 |
|      |      |          |                                               |
| f_1  | 0001 |  (x)(y)  |   1     1     1     1     1     1     1     1 |
|      |      |          |                                               |
| f_2  | 0010 |  (x) y   |      1  1        1  1        1  1        1  1 |
|      |      |          |                                               |
| f_3  | 0011 |  (x)     |         1           1           1           1 |
|      |      |          |                                               |
| f_4  | 0100 |   x (y)  |            1  1  1  1              1  1  1  1 |
|      |      |          |                                               |
| f_5  | 0101 |     (y)  |               1     1                 1     1 |
|      |      |          |                                               |
| f_6  | 0110 |  (x, y)  |                  1  1                    1  1 |
|      |      |          |                                               |
| f_7  | 0111 |  (x  y)  |                     1                       1 |
|      |      |          |                                               |
| f_8  | 1000 |   x  y   |                        1  1  1  1  1  1  1  1 |
|      |      |          |                                               |
| f_9  | 1001 | ((x, y)) |                           1     1     1     1 |
|      |      |          |                                               |
| f_10 | 1010 |      y   |                              1  1        1  1 |
|      |      |          |                                               |
| f_11 | 1011 |  (x (y)) |                                 1           1 |
|      |      |          |                                               |
| f_12 | 1100 |   x      |                                    1  1  1  1 |
|      |      |          |                                               |
| f_13 | 1101 | ((x) y)  |                                       1     1 |
|      |      |          |                                               |
| f_14 | 1110 | ((x)(y)) |                                          1  1 |
|      |      |          |                                               |
| f_15 | 1111 |   (())   |                                             1 |
|      |      |          |                                               |
o------o------o----------o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o--o
Table 13.  Syllogistic Premisses as Higher Order Indicator Functions
o---o------------------------o-----------------o---------------------------o
|   |                        |                 |                           |
| A | Universal Affirmative  | All   x  is  y  | Indicator of " x (y)" = 0 |
|   |                        |                 |                           |
| E | Universal Negative     | All   x  is (y) | Indicator of " x  y " = 0 |
|   |                        |                 |                           |
| I | Particular Affirmative | Some  x  is  y  | Indicator of " x  y " = 1 |
|   |                        |                 |                           |
| O | Particular Negative    | Some  x  is (y) | Indicator of " x (y)" = 1 |
|   |                        |                 |                           |
o---o------------------------o-----------------o---------------------------o
Table 14.  Relation of Quantifiers to Higher Order Propositions
o------------o------------o-----------o-----------o-----------o-----------o
| Mnemonic   | Category   | Classical | Alternate | Symmetric | Operator  |
|            |            |   Form    |   Form    |   Form    |           |
o============o============o===========o===========o===========o===========o
|     E      | Universal  |  All   x  |           |   No   x  |  (L_11)   |
| Exclusive  |  Negative  |   is  (y) |           |   is   y  |           |
o------------o------------o-----------o-----------o-----------o-----------o
|     A      | Universal  |  All   x  |           |   No   x  |  (L_10)   |
| Absolute   |  Affrmtve  |   is   y  |           |   is  (y) |           |
o------------o------------o-----------o-----------o-----------o-----------o
|            |            |  All   y  |   No   y  |   No  (x) |  (L_01)   |
|            |            |   is   x  |   is  (x) |   is   y  |           |
o------------o------------o-----------o-----------o-----------o-----------o
|            |            |  All  (y) |   No  (y) |   No  (x) |  (L_00)   |
|            |            |   is   x  |   is  (x) |   is  (y) |           |
o------------o------------o-----------o-----------o-----------o-----------o
|            |            | Some  (x) |           | Some  (x) |   L_00    |
|            |            |   is  (y) |           |   is  (y) |           |
o------------o------------o-----------o-----------o-----------o-----------o
|            |            | Some  (x) |           | Some  (x) |   L_01    |
|            |            |   is   y  |           |   is   y  |           |
o------------o------------o-----------o-----------o-----------o-----------o
|     O      | Particular | Some   x  |           | Some   x  |   L_10    |
| Obtrusive  |  Negative  |   is  (y) |           |   is  (y) |           |
o------------o------------o-----------o-----------o-----------o-----------o
|     I      | Particular | Some   x  |           | Some   x  |   L_11    |
| Indefinite |  Affrmtve  |   is   y  |           |   is   y  |           |
o------------o------------o-----------o-----------o-----------o-----------o
Table 15.  Simple Qualifiers of Propositions (n = 2)
o------o------o----------o-----o-----o-----o-----o-----o-----o-----o-----o
|  | x | 1100 |    f     |(L11)|(L10)|(L01)|(L00)| L00 | L01 | L10 | L11 |
|  | y | 1010 |          |no  x|no  x|no ~x|no ~x|sm ~x|sm ~x|sm  x|sm  x|
| f \  |      |          |is  y|is ~y|is  y|is ~y|is ~y|is  y|is ~y|is  y|
o------o------o----------o-----o-----o-----o-----o-----o-----o-----o-----o
|      |      |          |                                               |
| f_0  | 0000 |    ()    |  1     1     1     1     0     0     0     0  |
|      |      |          |                                               |
| f_1  | 0001 |  (x)(y)  |  1     1     1     0     1     0     0     0  |
|      |      |          |                                               |
| f_2  | 0010 |  (x) y   |  1     1     0     1     0     1     0     0  |
|      |      |          |                                               |
| f_3  | 0011 |  (x)     |  1     1     0     0     1     1     0     0  |
|      |      |          |                                               |
| f_4  | 0100 |   x (y)  |  1     0     1     1     0     0     1     0  |
|      |      |          |                                               |
| f_5  | 0101 |     (y)  |  1     0     1     0     1     0     1     0  |
|      |      |          |                                               |
| f_6  | 0110 |  (x, y)  |  1     0     0     1     0     1     1     0  |
|      |      |          |                                               |
| f_7  | 0111 |  (x  y)  |  1     0     0     0     1     1     1     0  |
|      |      |          |                                               |
| f_8  | 1000 |   x  y   |  0     1     1     1     0     0     0     1  |
|      |      |          |                                               |
| f_9  | 1001 | ((x, y)) |  0     1     1     0     1     0     0     1  |
|      |      |          |                                               |
| f_10 | 1010 |      y   |  0     1     0     1     0     1     0     1  |
|      |      |          |                                               |
| f_11 | 1011 |  (x (y)) |  0     1     0     0     1     1     0     1  |
|      |      |          |                                               |
| f_12 | 1100 |   x      |  0     0     1     1     0     0     1     1  |
|      |      |          |                                               |
| f_13 | 1101 | ((x) y)  |  0     0     1     0     1     0     1     1  |
|      |      |          |                                               |
| f_14 | 1110 | ((x)(y)) |  0     0     0     1     0     1     1     1  |
|      |      |          |                                               |
| f_15 | 1111 |   (())   |  0     0     0     0     1     1     1     1  |
|      |      |          |                                               |
o------o------o----------o-----o-----o-----o-----o-----o-----o-----o-----o
Table 1.  Propositional Forms on Two Variables
| L1 | L2 | L3 | L4 | L5 | L6 | 
|  | x : | 1 1 0 0 |  |  |  | 
|  | y : | 1 0 1 0 |  |  |  | 
| f0 | f0000 | 0 0 0 0 | ( ) | false | 0 | 
| f1 | f0001 | 0 0 0 1 | (x)(y) | neither x nor y | ¬x ∧ ¬y | 
| f2 | f0010 | 0 0 1 0 | (x) y | y and not x | ¬x ∧ y | 
| f3 | f0011 | 0 0 1 1 | (x) | not x | ¬x | 
| f4 | f0100 | 0 1 0 0 | x (y) | x and not y | x ∧ ¬y | 
| f5 | f0101 | 0 1 0 1 | (y) | not y | ¬y | 
| f6 | f0110 | 0 1 1 0 | (x, y) | x not equal to y | x ≠ y | 
| f7 | f0111 | 0 1 1 1 | (x y) | not both x and y | ¬x ∨ ¬y | 
| f8 | f1000 | 1 0 0 0 | x y | x and y | x ∧ y | 
| f9 | f1001 | 1 0 0 1 | ((x, y)) | x equal to y | x = y | 
| f10 | f1010 | 1 0 1 0 | y | y | y | 
| f11 | f1011 | 1 0 1 1 | (x (y)) | not x without y | x → y | 
| f12 | f1100 | 1 1 0 0 | x | x | x | 
| f13 | f1101 | 1 1 0 1 | ((x) y) | not y without x | x ← y | 
| f14 | f1110 | 1 1 1 0 | ((x)(y)) | x or y | x ∨ y | 
| f15 | f1111 | 1 1 1 1 | (( )) | true | 1 | 
Table 1.  Propositional Forms on Two Variables
| L1 | L2 | L3 | L4 | L5 | L6 | 
|  | x : | 1 1 0 0 |  |  |  | 
|  | y : | 1 0 1 0 |  |  |  | 
| f0 | f0000 | 0 0 0 0 | ( ) | false | 0 | 
| f1 | f0001 | 0 0 0 1 | (x)(y) | neither x nor y | ¬x ∧ ¬y | 
| f2 | f0010 | 0 0 1 0 | (x) y | y and not x | ¬x ∧ y | 
| f3 | f0011 | 0 0 1 1 | (x) | not x | ¬x | 
| f4 | f0100 | 0 1 0 0 | x (y) | x and not y | x ∧ ¬y | 
| f5 | f0101 | 0 1 0 1 | (y) | not y | ¬y | 
| f6 | f0110 | 0 1 1 0 | (x, y) | x not equal to y | x ≠ y | 
| f7 | f0111 | 0 1 1 1 | (x y) | not both x and y | ¬x ∨ ¬y | 
| f8 | f1000 | 1 0 0 0 | x y | x and y | x ∧ y | 
| f9 | f1001 | 1 0 0 1 | ((x, y)) | x equal to y | x = y | 
| f10 | f1010 | 1 0 1 0 | y | y | y | 
| f11 | f1011 | 1 0 1 1 | (x (y)) | not x without y | x → y | 
| f12 | f1100 | 1 1 0 0 | x | x | x | 
| f13 | f1101 | 1 1 0 1 | ((x) y) | not y without x | x ← y | 
| f14 | f1110 | 1 1 1 0 | ((x)(y)) | x or y | x ∨ y | 
| f15 | f1111 | 1 1 1 1 | (( )) | true | 1 | 
Template Draft
Propositional Forms on Two Variables
| L1 | L2 | L3 | L4 | L5 | L6 | Name | 
|  | x : | 1 1 0 0 |  |  |  |  | 
|  | y : | 1 0 1 0 |  |  |  |  | 
| f0 | f0000 | 0 0 0 0 | ( ) | false | 0 | Falsity | 
| f1 | f0001 | 0 0 0 1 | (x)(y) | neither x nor y | ¬x ∧ ¬y | NNOR | 
| f2 | f0010 | 0 0 1 0 | (x) y | y and not x | ¬x ∧ y | Insuccede | 
| f3 | f0011 | 0 0 1 1 | (x) | not x | ¬x | Not One | 
| f4 | f0100 | 0 1 0 0 | x (y) | x and not y | x ∧ ¬y | Imprecede | 
| f5 | f0101 | 0 1 0 1 | (y) | not y | ¬y | Not Two | 
| f6 | f0110 | 0 1 1 0 | (x, y) | x not equal to y | x ≠ y | Inequality | 
| f7 | f0111 | 0 1 1 1 | (x y) | not both x and y | ¬x ∨ ¬y | NAND | 
| f8 | f1000 | 1 0 0 0 | x y | x and y | x ∧ y | Conjunction | 
| f9 | f1001 | 1 0 0 1 | ((x, y)) | x equal to y | x = y | Equality | 
| f10 | f1010 | 1 0 1 0 | y | y | y | Two | 
| f11 | f1011 | 1 0 1 1 | (x (y)) | not x without y | x → y | Implication | 
| f12 | f1100 | 1 1 0 0 | x | x | x | One | 
| f13 | f1101 | 1 1 0 1 | ((x) y) | not y without x | x ← y | Involution | 
| f14 | f1110 | 1 1 1 0 | ((x)(y)) | x or y | x ∨ y | Disjunction | 
| f15 | f1111 | 1 1 1 1 | (( )) | true | 1 | Tautology | 
Logical negation is an operation on one logical value, typically the value of a proposition, that produces a value of true when its operand is false and a value of false when its operand is true.
The truth table of NOT p (also written as ~p or ¬p) is as follows:
Logical Negation
| p | ¬p | 
| F | T | 
| T | F | 
The logical negation of a proposition p is notated in different ways in various contexts of discussion and fields of application.  Among these variants are the following:
Variant Notations
| Notation | Vocalization | 
| \(\bar{p}\) | bar p | 
| \(p'\!\) | p prime,  p complement
 | 
| \(!p\!\) | bang p | 
No matter how it is notated or symbolized, the logical negation ¬p is read as "it is not the case that p", or usually more simply as "not p".
- Within a system of classical logic, double negation, that is, the negation of the negation of a proposition p, is logically equivalent to the initial proposition p.  Expressed in symbolic terms, ¬(¬p) ⇔ p.
- Within a system of intuitionistic logic, however, ¬¬p is a weaker statement than p.  On the other hand, the logical equivalence ¬¬¬p ⇔ ¬p remains valid.
Logical negation can be defined in terms of other logical operations.  For example, ~p can be defined as p → F, where → is material implication and F is absolute falsehood.  Conversely, one can define F as p & ~p for any proposition p, where & is logical conjunction.  The idea here is that any contradiction is false.  While these ideas work in both classical and intuitionistic logic, they don't work in Brazilian logic, where contradictions are not necessarily false.  But in classical logic, we get a further identity: p → q can be defined as ~p ∨ q, where ∨ is logical disjunction.
Algebraically, logical negation corresponds to the complement in a Boolean algebra (for classical logic) or a Heyting algebra (for intuitionistic logic).
Logical conjunction is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both of its operands are true.
The truth table of p AND q (also written as p ∧ q, p & q, or p\(\cdot\)q) is as follows:
Logical Conjunction
| p | q | p ∧ q | 
| F | F | F | 
| F | T | F | 
| T | F | F | 
| T | T | T | 
Logical disjunction is an operation on two logical values, typically the values of two propositions, that produces a value of false if and only if both of its operands are false.
The truth table of p OR q (also written as p ∨ q) is as follows:
Logical Disjunction
| p | q | p ∨ q | 
| F | F | F | 
| F | T | T | 
| T | F | T | 
| T | T | T | 
Logical equality is an operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both operands are false or both operands are true.
The truth table of p EQ q (also written as p = q, p ↔ q, or p ≡ q) is as follows:
Logical Equality
| p | q | p = q | 
| F | F | T | 
| F | T | F | 
| T | F | F | 
| T | T | T | 
Exclusive disjunction is an operation on two logical values, typically the values of two propositions, that produces a value of true just in case exactly one of its operands is true.
The truth table of p XOR q (also written as p + q, p ⊕ q, or p ≠ q) is as follows:
Exclusive Disjunction
| p | q | p XOR q | 
| F | F | F | 
| F | T | T | 
| T | F | T | 
| T | T | F | 
The following equivalents can then be deduced:
\[\begin{matrix}
p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\
\\
      & = & (p \lor q) & \land & (\lnot p \lor \lnot q) \\
\\
      & = & (p \lor q) & \land & \lnot (p \land q)
\end{matrix}\]
Generalized or n-ary XOR is true when the number of 1-bits  is odd.
 A + B = (A ∧ !B) ∨ (!A ∧ B)
       = {(A ∧ !B) ∨ !A} ∧ {(A ∧ !B) ∨ B}
       = {(A ∨ !A) ∧ (!B ∨ !A)} ∧ {(A ∨ B) ∧ (!B ∨ B)}
       = (!A ∨ !B) ∧ (A ∨ B)
       = !(A ∧ B) ∧ (A ∨ B)
 p + q = (p ∧ !q)  ∨ (!p ∧ B)
 
       = {(p ∧ !q) ∨ !p} ∧ {(p ∧ !q) ∨ q}
 
       = {(p ∨ !q) ∧ (!q ∨ !p)} ∧ {(p ∨ q) ∧ (!q ∨ q)}
 
       = (!p ∨ !q) ∧ (p ∨ q)
 
       = !(p ∧ q)  ∧ (p ∨ q)
 p + q = (p ∧ ~q)  ∨ (~p ∧ q)
 
       = ((p ∧ ~q) ∨ ~p) ∧ ((p ∧ ~q) ∨ q)
 
       = ((p ∨ ~q) ∧ (~q ∨ ~p)) ∧ ((p ∨ q) ∧ (~q ∨ q))
 
       = (~p ∨ ~q) ∧ (p ∨ q)
 
       = ~(p ∧ q)  ∧ (p ∨ q)
\[\begin{matrix}
p + q & = & (p \land \lnot q) & \lor & (\lnot p \land q) \\
& = & ((p \land \lnot q) \lor \lnot p) & \and & ((p \land \lnot q) \lor q) \\
& = & ((p \lor \lnot q) \land (\lnot q \lor \lnot p)) & \land & ((p \lor q) \land (\lnot q \lor q)) \\
& = & (\lnot p \lor \lnot q) & \land & (p \lor q) \\
& = & \lnot (p \land q) & \land & (p \lor q)
\end{matrix}\]
The material conditional and logical implication are both associated with an operation on two logical values, typically the values of two propositions, that produces a value of false if and only if the first operand is true and the second operand is false.
The truth table associated with the material conditional if p then q (symbolized as p → q) and the logical implication p implies q (symbolized as p ⇒ q) is as follows:
Logical Implication
| p | q | p ⇒ q | 
| F | F | T | 
| F | T | T | 
| T | F | F | 
| T | T | T | 
The NAND operation is a logical operation on two logical values, typically the values of two propositions, that produces a value of false if and only if both of its operands are true.  In other words, it produces a value of true if and only if at least one of its operands is false.
The truth table of p NAND q (also written as p | q or p ↑ q) is as follows:
Logical NAND
| p | q | p ↑ q | 
| F | F | T | 
| F | T | T | 
| T | F | T | 
| T | T | F | 
The NNOR operation is a logical operation on two logical values, typically the values of two propositions, that produces a value of true if and only if both of its operands are false.  In other words, it produces a value of false if and only if at least one of its operands is true.
The truth table of p NNOR q (also written as p ⊥ q or p ↓ q) is as follows:
Logical NOR
| p | q | p ↓ q | 
| F | F | T | 
| F | T | F | 
| T | F | F | 
| T | T | F | 
Relational Tables
Sign Relations
|  | O | = | Object Domain | 
|  | S | = | Sign Domain | 
|  | I | = | Interpretant Domain | 
|  | O | = | {Ann, Bob} | = | {A, B} | 
|  | S | = | {"Ann", "Bob", "I", "You"} | = | {"A", "B", "i", "u"} | 
|  | I | = | {"Ann", "Bob", "I", "You"} | = | {"A", "B", "i", "u"} | 
LA = Sign Relation of Interpreter A
| Object | Sign | Interpretant | 
| A | "A" | "A" | 
| A | "A" | "i" | 
| A | "i" | "A" | 
| A | "i" | "i" | 
| B | "B" | "B" | 
| B | "B" | "u" | 
| B | "u" | "B" | 
| B | "u" | "u" | 
LB = Sign Relation of Interpreter B
| Object | Sign | Interpretant | 
| A | "A" | "A" | 
| A | "A" | "u" | 
| A | "u" | "A" | 
| A | "u" | "u" | 
| B | "B" | "B" | 
| B | "B" | "i" | 
| B | "i" | "B" | 
| B | "i" | "i" | 
Triadic Relations
Algebraic Examples
L0 = {(x, y, z) ∈ B3 : x + y + z = 0}
| X | Y | Z | 
| 0 | 0 | 0 | 
| 0 | 1 | 1 | 
| 1 | 0 | 1 | 
| 1 | 1 | 0 | 
L1 = {(x, y, z) ∈ B3 : x + y + z = 1}
| X | Y | Z | 
| 0 | 0 | 1 | 
| 0 | 1 | 0 | 
| 1 | 0 | 0 | 
| 1 | 1 | 1 | 
Semiotic Examples
LA = Sign Relation of Interpreter A
| Object | Sign | Interpretant | 
| A | "A" | "A" | 
| A | "A" | "i" | 
| A | "i" | "A" | 
| A | "i" | "i" | 
| B | "B" | "B" | 
| B | "B" | "u" | 
| B | "u" | "B" | 
| B | "u" | "u" | 
LB = Sign Relation of Interpreter B
| Object | Sign | Interpretant | 
| A | "A" | "A" | 
| A | "A" | "u" | 
| A | "u" | "A" | 
| A | "u" | "u" | 
| B | "B" | "B" | 
| B | "B" | "i" | 
| B | "i" | "B" | 
| B | "i" | "i" | 
Dyadic Projections
|  | LOS | = | projOS(L) | = | { (o, s) ∈ O × S : (o, s, i) ∈ L for some i ∈ I } | 
|  | LSO | = | projSO(L) | = | { (s, o) ∈ S × O : (o, s, i) ∈ L for some i ∈ I } | 
|  | LIS | = | projIS(L) | = | { (i, s) ∈ I × S : (o, s, i) ∈ L for some o ∈ O } | 
|  | LSI | = | projSI(L) | = | { (s, i) ∈ S × I : (o, s, i) ∈ L for some o ∈ O } | 
|  | LOI | = | projOI(L) | = | { (o, i) ∈ O × I : (o, s, i) ∈ L for some s ∈ S } | 
|  | LIO | = | projIO(L) | = | { (i, o) ∈ I × O : (o, s, i) ∈ L for some s ∈ S } | 
Method 1 : Subtitles as Captions
| 
projOS(LA)
| Object | Sign |  
| A | "A" |  
| A | "i" |  
| B | "B" |  
| B | "u" |  | 
projOS(LB)
| Object | Sign |  
| A | "A" |  
| A | "u" |  
| B | "B" |  
| B | "i" |  | 
| 
projSI(LA)
| Sign | Interpretant |  
| "A" | "A" |  
| "A" | "i" |  
| "i" | "A" |  
| "i" | "i" |  
| "B" | "B" |  
| "B" | "u" |  
| "u" | "B" |  
| "u" | "u" |  | 
projSI(LB)
| Sign | Interpretant |  
| "A" | "A" |  
| "A" | "u" |  
| "u" | "A" |  
| "u" | "u" |  
| "B" | "B" |  
| "B" | "i" |  
| "i" | "B" |  
| "i" | "i" |  | 
| 
projOI(LA)
| Object | Interpretant |  
| A | "A" |  
| A | "i" |  
| B | "B" |  
| B | "u" |  | 
projOI(LB)
| Object | Interpretant |  
| A | "A" |  
| A | "u" |  
| B | "B" |  
| B | "i" |  | 
Method 2 : Subtitles as Top Rows
| projOS(LA) 
| Object | Sign |  
| A | "A" |  
| A | "i" |  
| B | "B" |  
| B | "u" |  | projOS(LB) 
| Object | Sign |  
| A | "A" |  
| A | "u" |  
| B | "B" |  
| B | "i" |  | 
| projSI(LA) 
| Sign | Interpretant |  
| "A" | "A" |  
| "A" | "i" |  
| "i" | "A" |  
| "i" | "i" |  
| "B" | "B" |  
| "B" | "u" |  
| "u" | "B" |  
| "u" | "u" |  | projSI(LB) 
| Sign | Interpretant |  
| "A" | "A" |  
| "A" | "u" |  
| "u" | "A" |  
| "u" | "u" |  
| "B" | "B" |  
| "B" | "i" |  
| "i" | "B" |  
| "i" | "i" |  | 
| projOI(LA) 
| Object | Interpretant |  
| A | "A" |  
| A | "i" |  
| B | "B" |  
| B | "u" |  | projOI(LB) 
| Object | Interpretant |  
| A | "A" |  
| A | "u" |  
| B | "B" |  
| B | "i" |  | 
Relation Reduction
Method 1 : Subtitles as Captions
L0 = {(x, y, z) ∈ B3 : x + y + z = 0}
| X | Y | Z | 
| 0 | 0 | 0 | 
| 0 | 1 | 1 | 
| 1 | 0 | 1 | 
| 1 | 1 | 0 | 
L1 = {(x, y, z) ∈ B3 : x + y + z = 1}
| X | Y | Z | 
| 0 | 0 | 1 | 
| 0 | 1 | 0 | 
| 1 | 0 | 0 | 
| 1 | 1 | 1 | 
| 
projXY(L0)
| X | Y |  
| 0 | 0 |  
| 0 | 1 |  
| 1 | 0 |  
| 1 | 1 |  | 
projXZ(L0)
| X | Z |  
| 0 | 0 |  
| 0 | 1 |  
| 1 | 1 |  
| 1 | 0 |  | 
projYZ(L0)
| Y | Z |  
| 0 | 0 |  
| 1 | 1 |  
| 0 | 1 |  
| 1 | 0 |  | 
| 
projXY(L1)
| X | Y |  
| 0 | 0 |  
| 0 | 1 |  
| 1 | 0 |  
| 1 | 1 |  | 
projXZ(L1)
| X | Z |  
| 0 | 1 |  
| 0 | 0 |  
| 1 | 0 |  
| 1 | 1 |  | 
projYZ(L1)
| Y | Z |  
| 0 | 1 |  
| 1 | 0 |  
| 0 | 0 |  
| 1 | 1 |  | 
| projXY(L0) = projXY(L1) | projXZ(L0) = projXZ(L1) | projYZ(L0) = projYZ(L1) | 
LA = Sign Relation of Interpreter A
| Object | Sign | Interpretant | 
| A | "A" | "A" | 
| A | "A" | "i" | 
| A | "i" | "A" | 
| A | "i" | "i" | 
| B | "B" | "B" | 
| B | "B" | "u" | 
| B | "u" | "B" | 
| B | "u" | "u" | 
LB = Sign Relation of Interpreter B
| Object | Sign | Interpretant | 
| A | "A" | "A" | 
| A | "A" | "u" | 
| A | "u" | "A" | 
| A | "u" | "u" | 
| B | "B" | "B" | 
| B | "B" | "i" | 
| B | "i" | "B" | 
| B | "i" | "i" | 
| 
projXY(LA)
| Object | Sign |  
| A | "A" |  
| A | "i" |  
| B | "B" |  
| B | "u" |  | 
projXZ(LA)
| Object | Interpretant |  
| A | "A" |  
| A | "i" |  
| B | "B" |  
| B | "u" |  | 
projYZ(LA)
| Sign | Interpretant |  
| "A" | "A" |  
| "A" | "i" |  
| "i" | "A" |  
| "i" | "i" |  
| "B" | "B" |  
| "B" | "u" |  
| "u" | "B" |  
| "u" | "u" |  | 
| 
projXY(LB)
| Object | Sign |  
| A | "A" |  
| A | "u" |  
| B | "B" |  
| B | "i" |  | 
projXZ(LB)
| Object | Interpretant |  
| A | "A" |  
| A | "u" |  
| B | "B" |  
| B | "i" |  | 
projYZ(LB)
| Sign | Interpretant |  
| "A" | "A" |  
| "A" | "u" |  
| "u" | "A" |  
| "u" | "u" |  
| "B" | "B" |  
| "B" | "i" |  
| "i" | "B" |  
| "i" | "i" |  | 
| projXY(LA) ≠ projXY(LB) | projXZ(LA) ≠ projXZ(LB) | projYZ(LA) ≠ projYZ(LB) | 
Method 2 : Subtitles as Top Rows
L0 = {(x, y, z) ∈ B3 : x + y + z = 0}
| X | Y | Z | 
| 0 | 0 | 0 | 
| 0 | 1 | 1 | 
| 1 | 0 | 1 | 
| 1 | 1 | 0 | 
L1 = {(x, y, z) ∈ B3 : x + y + z = 1}
| X | Y | Z | 
| 0 | 0 | 1 | 
| 0 | 1 | 0 | 
| 1 | 0 | 0 | 
| 1 | 1 | 1 | 
| projXY(L0) | projXZ(L0) | projYZ(L0) | 
| projXY(L1) | projXZ(L1) | projYZ(L1) | 
| projXY(L0) = projXY(L1) | projXZ(L0) = projXZ(L1) | projYZ(L0) = projYZ(L1) | 
LA = Sign Relation of Interpreter A
| Object | Sign | Interpretant | 
| A | "A" | "A" | 
| A | "A" | "i" | 
| A | "i" | "A" | 
| A | "i" | "i" | 
| B | "B" | "B" | 
| B | "B" | "u" | 
| B | "u" | "B" | 
| B | "u" | "u" | 
LB = Sign Relation of Interpreter B
| Object | Sign | Interpretant | 
| A | "A" | "A" | 
| A | "A" | "u" | 
| A | "u" | "A" | 
| A | "u" | "u" | 
| B | "B" | "B" | 
| B | "B" | "i" | 
| B | "i" | "B" | 
| B | "i" | "i" | 
| projXY(LA) 
| Object | Sign |  
| A | "A" |  
| A | "i" |  
| B | "B" |  
| B | "u" |  | projXZ(LA) 
| Object | Interpretant |  
| A | "A" |  
| A | "i" |  
| B | "B" |  
| B | "u" |  | projYZ(LA) 
| Sign | Interpretant |  
| "A" | "A" |  
| "A" | "i" |  
| "i" | "A" |  
| "i" | "i" |  
| "B" | "B" |  
| "B" | "u" |  
| "u" | "B" |  
| "u" | "u" |  | 
| projXY(LB) 
| Object | Sign |  
| A | "A" |  
| A | "u" |  
| B | "B" |  
| B | "i" |  | projXZ(LB) 
| Object | Interpretant |  
| A | "A" |  
| A | "u" |  
| B | "B" |  
| B | "i" |  | projYZ(LB) 
| Sign | Interpretant |  
| "A" | "A" |  
| "A" | "u" |  
| "u" | "A" |  
| "u" | "u" |  
| "B" | "B" |  
| "B" | "i" |  
| "i" | "B" |  
| "i" | "i" |  | 
| projXY(LA) ≠ projXY(LB) | projXZ(LA) ≠ projXZ(LB) | projYZ(LA) ≠ projYZ(LB) | 
Formatted Text Display
- So in a triadic fact, say, the example 
 
- we make no distinction in the ordinary logic of relations between the subject nominative, the direct object, and the indirect object.  We say that the proposition has three logical subjects.  We regard it as a mere affair of English grammar that there are six ways of expressing this: 
 
| A gives B to C | A benefits C with B | 
| B enriches C at expense of A | C receives B from A | 
| C thanks A for B | B leaves A for C | 
- These six sentences express one and the same indivisible phenomenon. (C.S. Peirce, "The Categories Defended", MS 308 (1903), EP 2, 170-171).
Work Area
Binary Operations
| x0 | x1 | 2f0 | 2f1 | 2f2 | 2f3 | 2f4 | 2f5 | 2f6 | 2f7 | 2f8 | 2f9 | 2f10 | 2f11 | 2f12 | 2f13 | 2f14 | 2f15 | 
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
Draft 1
TRUTH TABLES FOR THE BOOLEAN OPERATIONS OF ARITY UP TO 2
|  |  | Unary Operations
| x0 |  | 1f0 | 1f1 | 1f2 | 1f3 |   | 0 |  | 0 | 1 | 0 | 1 |   | 1 |  | 0 | 0 | 1 | 1 |  |  | Binary Operations
| x0 | x1 |  | 2f0 | 2f1 | 2f2 | 2f3 | 2f4 | 2f5 | 2f6 | 2f7 | 2f8 | 2f9 | 2f10 | 2f11 | 2f12 | 2f13 | 2f14 | 2f15 |   | 0 | 0 |  | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |   | 1 | 0 |  | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |   | 0 | 1 |  | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |   | 1 | 1 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  | 
Draft 2
TRUTH TABLES FOR THE BOOLEAN OPERATIONS OF ARITY UP TO 2
|  |  | Unary Operations
| x0 |  | 1f0 | 1f1 | 1f2 | 1f3 |   | 0 |  | 0 | 1 | 0 | 1 |   | 1 |  | 0 | 0 | 1 | 1 |  |  | Binary Operations
| x0 | x1 |  | 2f0 | 2f1 | 2f2 | 2f3 | 2f4 | 2f5 | 2f6 | 2f7 | 2f8 | 2f9 | 2f10 | 2f11 | 2f12 | 2f13 | 2f14 | 2f15 |   | 0 | 0 |  | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |   | 1 | 0 |  | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |   | 0 | 1 |  | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |   | 1 | 1 |  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  | 
Inquiry and Analogy
Test Patterns
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
Table 10
Table 10.  Higher Order Propositions (n = 1)
| \(x\): | 1 0 | \(f\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | 
| \(f_0\) | 0 0 | \(0\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_1\) | 0 1 | \((x)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_2\) | 1 0 | \(x\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_3\) | 1 1 | \(1\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
Table 10.  Higher Order Propositions (n = 1)
| \(x:\) | 1 0 | \(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | 
| \(f_0\) | 0 0 | \(0\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_1\) | 0 1 | \((x)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_2\) | 1 0 | \(x\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_3\) | 1 1 | \(1\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
Table 11
Table 11.  Interpretive Categories for Higher Order Propositions (n = 1)
| Measure | Happening | Exactness | Existence | Linearity | Uniformity | Information | 
| \(m_0\!\) | Nothing happens |  |  |  |  |  | 
| \(m_1\!\) |  | Just false | Nothing exists |  |  |  | 
| \(m_2\!\) |  | Just not \(x\!\) |  |  |  |  | 
| \(m_3\!\) |  |  | Nothing is \(x\!\) |  |  |  | 
| \(m_4\!\) |  | Just \(x\!\) |  |  |  |  | 
| \(m_5\!\) |  |  | Everything is \(x\!\) | \(f\!\) is linear |  |  | 
| \(m_6\!\) |  |  |  |  | \(f\!\) is not uniform | \(f\!\) is informed | 
| \(m_7\!\) |  | Not just true |  |  |  |  | 
| \(m_8\!\) |  | Just true |  |  |  |  | 
| \(m_9\!\) |  |  |  |  | \(f\!\) is uniform | \(f\!\) is not informed | 
| \(m_{10}\!\) |  |  | Something is not \(x\!\) | \(f\!\) is not linear |  |  | 
| \(m_{11}\!\) |  | Not just \(x\!\) |  |  |  |  | 
| \(m_{12}\!\) |  |  | Something is \(x\!\) |  |  |  | 
| \(m_{13}\!\) |  | Not just not \(x\!\) |  |  |  |  | 
| \(m_{14}\!\) |  | Not just false | Something exists |  |  |  | 
| \(m_{15}\!\) | Anything happens |  |  |  |  |  | 
Table 12
Table 12.  Higher Order Propositions (n = 2)
| \(x:\) \(y:\)
 | 1100 1010
 | \(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | \(m_{16}\) | \(m_{17}\) | \(m_{18}\) | \(m_{19}\) | \(m_{20}\) | \(m_{21}\) | \(m_{22}\) | \(m_{23}\) | 
| \(f_0\) | 0000 | \((~)\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_1\) | 0001 | \((x)(y)\!\) |  |  | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_2\) | 0010 | \((x) y\!\) |  |  |  |  | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_3\) | 0011 | \((x)\!\) |  |  |  |  |  |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_4\) | 0100 | \(x (y)\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| \(f_5\) | 0101 | \((y)\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_6\) | 0110 | \((x, y)\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_7\) | 0111 | \((x y)\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_8\) | 1000 | \(x y\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_9\) | 1001 | \(((x, y))\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_{10}\) | 1010 | \(y\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_{11}\) | 1011 | \((x (y))\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_{12}\) | 1100 | \(x\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_{13}\) | 1101 | \(((x) y)\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_{14}\) | 1110 | \(((x)(y))\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_{15}\) | 1111 | \(((~))\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
Table 12.  Higher Order Propositions (n = 2)
| \(u:\) \(v:\)
 | 1100 1010
 | \(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | \(m_{16}\) | \(m_{17}\) | \(m_{18}\) | \(m_{19}\) | \(m_{20}\) | \(m_{21}\) | \(m_{22}\) | \(m_{23}\) | 
| \(f_0\) | 0000 | \((~)\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_2\) | 0010 | \((u) v\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_3\) | 0011 | \((u)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| \(f_5\) | 0101 | \((v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_7\) | 0111 | \((u v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_8\) | 1000 | \(u v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{10}\) | 1010 | \(v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{15}\) | 1111 | \(((~))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
Table 13
Table 13.  Qualifiers of Implication Ordering:  \(\alpha_i f = \Upsilon (f_i, f) = \Upsilon (f_i \Rightarrow f)\)
| \(u:\) \(v:\)
 | 1100 1010
 | \(f\!\) | \(\alpha_0\) | \(\alpha_1\) | \(\alpha_2\) | \(\alpha_3\) | \(\alpha_4\) | \(\alpha_5\) | \(\alpha_6\) | \(\alpha_7\) | \(\alpha_8\) | \(\alpha_9\) | \(\alpha_{10}\) | \(\alpha_{11}\) | \(\alpha_{12}\) | \(\alpha_{13}\) | \(\alpha_{14}\) | \(\alpha_{15}\) | 
| \(f_0\) | 0000 | \((~)\) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_2\) | 0010 | \((u) v\!\) | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_5\) | 0101 | \((v)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_7\) | 0111 | \((u v)\!\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_8\) | 1000 | \(u v\!\) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{10}\) | 1010 | \(v\!\) | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 
| \(f_{12}\) | 1100 | \(u\!\) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| \(f_{15}\) | 1111 | \(((~))\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
Table 14
Table 14.  Qualifiers of Implication Ordering:  \(\beta_i f = \Upsilon (f, f_i) = \Upsilon (f \Rightarrow f_i)\)
| \(u:\) \(v:\)
 | 1100 1010
 | \(f\!\) | \(\beta_0\) | \(\beta_1\) | \(\beta_2\) | \(\beta_3\) | \(\beta_4\) | \(\beta_5\) | \(\beta_6\) | \(\beta_7\) | \(\beta_8\) | \(\beta_9\) | \(\beta_{10}\) | \(\beta_{11}\) | \(\beta_{12}\) | \(\beta_{13}\) | \(\beta_{14}\) | \(\beta_{15}\) | 
| \(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_2\) | 0010 | \((u) v\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_3\) | 0011 | \((u)\!\) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_5\) | 0101 | \((v)\!\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 
| \(f_7\) | 0111 | \((u v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
| \(f_8\) | 1000 | \(u v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_{10}\) | 1010 | \(v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 
| \(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 
| \(f_{15}\) | 1111 | \(((~))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
Figure 15
Table 16
Table 16.  Syllogistic Premisses as Higher Order Indicator Functions
| \(\begin{array}{clcl}
\mathrm{A}                           &
\mathrm{Universal~Affirmative}       &
\mathrm{All}\ u\ \mathrm{is}\ v      &
\mathrm{Indicator~of}\ u (v) = 0     \\
\mathrm{E}                           &
\mathrm{Universal~Negative}          &
\mathrm{All}\ u\ \mathrm{is}\ (v)    &
\mathrm{Indicator~of}\ u \cdot v = 0 \\
\mathrm{I}                           &
\mathrm{Particular~Affirmative}      &
\mathrm{Some}\ u\ \mathrm{is}\ v     &
\mathrm{Indicator~of}\ u \cdot v = 1 \\
\mathrm{O}                           &
\mathrm{Particular~Negative}         &
\mathrm{Some}\ u\ \mathrm{is}\ (v)   &
\mathrm{Indicator~of}\ u (v) = 1     \\
\end{array}\)
 | 
Table 17
Table 17.  Simple Qualifiers of Propositions (Version 1)
| \(u:\) \(v:\)
 | 1100 1010
 | \(f\!\) | \((\ell_{11})\) \(\text{No } u \)
 \(\text{is } v \)
 | \((\ell_{10})\) \(\text{No } u \)
 \(\text{is }(v)\)
 | \((\ell_{01})\) \(\text{No }(u)\)
 \(\text{is } v \)
 | \((\ell_{00})\) \(\text{No }(u)\)
 \(\text{is }(v)\)
 | \( \ell_{00} \) \(\text{Some }(u)\)
 \(\text{is }(v)\)
 | \( \ell_{01} \) \(\text{Some }(u)\)
 \(\text{is } v \)
 | \( \ell_{10} \) \(\text{Some } u \)
 \(\text{is }(v)\)
 | \( \ell_{11} \) \(\text{Some } u \)
 \(\text{is } v \)
 | 
| \(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 
| \(f_2\) | 0010 | \((u) v\!\) | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 
| \(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 
| \(f_5\) | 0101 | \((v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 
| \(f_7\) | 0111 | \((u v)\!\) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 
| \(f_8\) | 1000 | \(u v\!\) | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 
| \(f_{10}\) | 1010 | \(v\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 
| \(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 
| \(f_{15}\) | 1111 | \(((~))\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
Table 18
Table 18.  Simple Qualifiers of Propositions (Version 2)
| \(u:\) \(v:\)
 | 1100 1010
 | \(f\!\) | \((\ell_{11})\) \(\text{No } u \)
 \(\text{is } v \)
 | \((\ell_{10})\) \(\text{No } u \)
 \(\text{is }(v)\)
 | \((\ell_{01})\) \(\text{No }(u)\)
 \(\text{is } v \)
 | \((\ell_{00})\) \(\text{No }(u)\)
 \(\text{is }(v)\)
 | \( \ell_{00} \) \(\text{Some }(u)\)
 \(\text{is }(v)\)
 | \( \ell_{01} \) \(\text{Some }(u)\)
 \(\text{is } v \)
 | \( \ell_{10} \) \(\text{Some } u \)
 \(\text{is }(v)\)
 | \( \ell_{11} \) \(\text{Some } u \)
 \(\text{is } v \)
 | 
| \(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 
| \(f_2\) | 0010 | \((u) v\!\) | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 
| \(f_8\) | 1000 | \(u v\!\) | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 
| \(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 
| \(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 
| \(f_5\) | 0101 | \((v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| \(f_{10}\) | 1010 | \(v\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_7\) | 0111 | \((u v)\!\) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 
| \(f_{15}\) | 1111 | \(((~))\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
Table 19
Table 19.  Relation of Quantifiers to Higher Order Propositions
| \(\text{Mnemonic}\) | \(\text{Category}\) | \(\text{Classical Form}\) | \(\text{Alternate Form}\) | \(\text{Symmetric Form}\) | \(\text{Operator}\) | 
| \(\text{E}\!\) \(\text{Exclusive}\)
 | \(\text{Universal}\) \(\text{Negative}\)
 | \(\text{All}\ u\ \text{is}\ (v)\) |  | \(\text{No}\  u\ \text{is}\  v \) | \((\ell_{11})\) | 
| \(\text{A}\!\) \(\text{Absolute}\)
 | \(\text{Universal}\) \(\text{Affirmative}\)
 | \(\text{All}\ u\ \text{is}\  v \) |  | \(\text{No}\  u\ \text{is}\ (v)\) | \((\ell_{10})\) | 
|  |  | \(\text{All}\ v\  \text{is}\  u \) | \(\text{No}\  v\  \text{is}\ (u)\) | \(\text{No}\ (u)\ \text{is}\  v \) | \((\ell_{01})\) | 
|  |  | \(\text{All}\ (v)\ \text{is}\  u \) | \(\text{No}\  (v)\ \text{is}\ (u)\) | \(\text{No}\  (u)\ \text{is}\ (v)\) | \((\ell_{00})\) | 
|  |  | \(\text{Some}\ (u)\ \text{is}\ (v)\) |  | \(\text{Some}\ (u)\ \text{is}\ (v)\) | \(\ell_{00}\!\) | 
|  |  | \(\text{Some}\ (u)\ \text{is}\ v\) |  | \(\text{Some}\ (u)\ \text{is}\ v\) | \(\ell_{01}\!\) | 
| \(\text{O}\!\) \(\text{Obtrusive}\)
 | \(\text{Particular}\) \(\text{Negative}\)
 | \(\text{Some}\ u\ \text{is}\ (v)\) |  | \(\text{Some}\ u\ \text{is}\ (v)\) | \(\ell_{10}\!\) | 
| \(\text{I}\!\) \(\text{Indefinite}\)
 | \(\text{Particular}\) \(\text{Affirmative}\)
 | \(\text{Some}\ u\ \text{is}\ v\) |  | \(\text{Some}\ u\ \text{is}\ v\) | \(\ell_{11}\!\) |