Differential Logic
Ascii Tables
Table A1.  Propositional Forms On Two Variables
o---------o---------o---------o----------o------------------o----------o
| L_1     | L_2     | L_3     | L_4      | L_5              | L_6      |
|         |         |         |          |                  |          |
| Decimal | Binary  | Vector  | Cactus   | English          | Ordinary |
o---------o---------o---------o----------o------------------o----------o
|         |       x : 1 1 0 0 |          |                  |          |
|         |       y : 1 0 1 0 |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_0     | f_0000  | 0 0 0 0 |    ()    | false            |    0     |
|         |         |         |          |                  |          |
| f_1     | f_0001  | 0 0 0 1 |  (x)(y)  | neither x nor y  | ~x & ~y  |
|         |         |         |          |                  |          |
| f_2     | f_0010  | 0 0 1 0 |  (x) y   | y and not x      | ~x &  y  |
|         |         |         |          |                  |          |
| f_3     | f_0011  | 0 0 1 1 |  (x)     | not x            | ~x       |
|         |         |         |          |                  |          |
| f_4     | f_0100  | 0 1 0 0 |   x (y)  | x and not y      |  x & ~y  |
|         |         |         |          |                  |          |
| f_5     | f_0101  | 0 1 0 1 |     (y)  | not y            |      ~y  |
|         |         |         |          |                  |          |
| f_6     | f_0110  | 0 1 1 0 |  (x, y)  | x not equal to y |  x +  y  |
|         |         |         |          |                  |          |
| f_7     | f_0111  | 0 1 1 1 |  (x  y)  | not both x and y | ~x v ~y  |
|         |         |         |          |                  |          |
| f_8     | f_1000  | 1 0 0 0 |   x  y   | x and y          |  x &  y  |
|         |         |         |          |                  |          |
| f_9     | f_1001  | 1 0 0 1 | ((x, y)) | x equal to y     |  x =  y  |
|         |         |         |          |                  |          |
| f_10    | f_1010  | 1 0 1 0 |      y   | y                |       y  |
|         |         |         |          |                  |          |
| f_11    | f_1011  | 1 0 1 1 |  (x (y)) | not x without y  |  x => y  |
|         |         |         |          |                  |          |
| f_12    | f_1100  | 1 1 0 0 |   x      | x                |  x       |
|         |         |         |          |                  |          |
| f_13    | f_1101  | 1 1 0 1 | ((x) y)  | not y without x  |  x <= y  |
|         |         |         |          |                  |          |
| f_14    | f_1110  | 1 1 1 0 | ((x)(y)) | x or y           |  x v  y  |
|         |         |         |          |                  |          |
| f_15    | f_1111  | 1 1 1 1 |   (())   | true             |    1     |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
Table A2.  Propositional Forms On Two Variables
o---------o---------o---------o----------o------------------o----------o
| L_1     | L_2     | L_3     | L_4      | L_5              | L_6      |
|         |         |         |          |                  |          |
| Decimal | Binary  | Vector  | Cactus   | English          | Ordinary |
o---------o---------o---------o----------o------------------o----------o
|         |       x : 1 1 0 0 |          |                  |          |
|         |       y : 1 0 1 0 |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_0     | f_0000  | 0 0 0 0 |    ()    | false            |    0     |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_1     | f_0001  | 0 0 0 1 |  (x)(y)  | neither x nor y  | ~x & ~y  |
|         |         |         |          |                  |          |
| f_2     | f_0010  | 0 0 1 0 |  (x) y   | y and not x      | ~x &  y  |
|         |         |         |          |                  |          |
| f_4     | f_0100  | 0 1 0 0 |   x (y)  | x and not y      |  x & ~y  |
|         |         |         |          |                  |          |
| f_8     | f_1000  | 1 0 0 0 |   x  y   | x and y          |  x &  y  |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_3     | f_0011  | 0 0 1 1 |  (x)     | not x            | ~x       |
|         |         |         |          |                  |          |
| f_12    | f_1100  | 1 1 0 0 |   x      | x                |  x       |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_6     | f_0110  | 0 1 1 0 |  (x, y)  | x not equal to y |  x +  y  |
|         |         |         |          |                  |          |
| f_9     | f_1001  | 1 0 0 1 | ((x, y)) | x equal to y     |  x =  y  |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_5     | f_0101  | 0 1 0 1 |     (y)  | not y            |      ~y  |
|         |         |         |          |                  |          |
| f_10    | f_1010  | 1 0 1 0 |      y   | y                |       y  |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_7     | f_0111  | 0 1 1 1 |  (x  y)  | not both x and y | ~x v ~y  |
|         |         |         |          |                  |          |
| f_11    | f_1011  | 1 0 1 1 |  (x (y)) | not x without y  |  x => y  |
|         |         |         |          |                  |          |
| f_13    | f_1101  | 1 1 0 1 | ((x) y)  | not y without x  |  x <= y  |
|         |         |         |          |                  |          |
| f_14    | f_1110  | 1 1 1 0 | ((x)(y)) | x or y           |  x v  y  |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
|         |         |         |          |                  |          |
| f_15    | f_1111  | 1 1 1 1 |   (())   | true             |    1     |
|         |         |         |          |                  |          |
o---------o---------o---------o----------o------------------o----------o
Table A3.  Ef Expanded Over Differential Features {dx, dy}
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
|      |     f      |   T_11 f   |   T_10 f   |   T_01 f   |   T_00 f   |
|      |            |            |            |            |            |
|      |            | Ef| dx dy  | Ef| dx(dy) | Ef| (dx)dy | Ef|(dx)(dy)|
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_0  |     ()     |     ()     |     ()     |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_1  |   (x)(y)   |    x  y    |    x (y)   |   (x) y    |   (x)(y)   |
|      |            |            |            |            |            |
| f_2  |   (x) y    |    x (y)   |    x  y    |   (x)(y)   |   (x) y    |
|      |            |            |            |            |            |
| f_4  |    x (y)   |   (x) y    |   (x)(y)   |    x  y    |    x (y)   |
|      |            |            |            |            |            |
| f_8  |    x  y    |   (x)(y)   |   (x) y    |    x (y)   |    x  y    |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_3  |   (x)      |    x       |    x       |   (x)      |   (x)      |
|      |            |            |            |            |            |
| f_12 |    x       |   (x)      |   (x)      |    x       |    x       |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_6  |   (x, y)   |   (x, y)   |  ((x, y))  |  ((x, y))  |   (x, y)   |
|      |            |            |            |            |            |
| f_9  |  ((x, y))  |  ((x, y))  |   (x, y)   |   (x, y)   |  ((x, y))  |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_5  |      (y)   |       y    |      (y)   |       y    |      (y)   |
|      |            |            |            |            |            |
| f_10 |       y    |      (y)   |       y    |      (y)   |       y    |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_7  |   (x  y)   |  ((x)(y))  |  ((x) y)   |   (x (y))  |   (x  y)   |
|      |            |            |            |            |            |
| f_11 |   (x (y))  |  ((x) y)   |  ((x)(y))  |   (x  y)   |   (x (y))  |
|      |            |            |            |            |            |
| f_13 |  ((x) y)   |   (x (y))  |   (x  y)   |  ((x)(y))  |  ((x) y)   |
|      |            |            |            |            |            |
| f_14 |  ((x)(y))  |   (x  y)   |   (x (y))  |  ((x) y)   |  ((x)(y))  |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_15 |    (())    |    (())    |    (())    |    (())    |    (())    |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|                   |            |            |            |            |
| Fixed Point Total |      4     |      4     |      4     |     16     |
|                   |            |            |            |            |
o-------------------o------------o------------o------------o------------o
Table A4.  Df Expanded Over Differential Features {dx, dy}
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
|      |     f      | Df| dx dy  | Df| dx(dy) | Df| (dx)dy | Df|(dx)(dy)|
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_0  |     ()     |     ()     |     ()     |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_1  |   (x)(y)   |  ((x, y))  |    (y)     |    (x)     |     ()     |
|      |            |            |            |            |            |
| f_2  |   (x) y    |   (x, y)   |     y      |    (x)     |     ()     |
|      |            |            |            |            |            |
| f_4  |    x (y)   |   (x, y)   |    (y)     |     x      |     ()     |
|      |            |            |            |            |            |
| f_8  |    x  y    |  ((x, y))  |     y      |     x      |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_3  |   (x)      |    (())    |    (())    |     ()     |     ()     |
|      |            |            |            |            |            |
| f_12 |    x       |    (())    |    (())    |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_6  |   (x, y)   |     ()     |    (())    |    (())    |     ()     |
|      |            |            |            |            |            |
| f_9  |  ((x, y))  |     ()     |    (())    |    (())    |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_5  |      (y)   |    (())    |     ()     |    (())    |     ()     |
|      |            |            |            |            |            |
| f_10 |       y    |    (())    |     ()     |    (())    |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_7  |   (x  y)   |  ((x, y))  |     y      |     x      |     ()     |
|      |            |            |            |            |            |
| f_11 |   (x (y))  |   (x, y)   |    (y)     |     x      |     ()     |
|      |            |            |            |            |            |
| f_13 |  ((x) y)   |   (x, y)   |     y      |    (x)     |     ()     |
|      |            |            |            |            |            |
| f_14 |  ((x)(y))  |  ((x, y))  |    (y)     |    (x)     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_15 |    (())    |     ()     |     ()     |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
Table A5.  Ef Expanded Over Ordinary Features {x, y}
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
|      |     f      |  Ef | xy   | Ef | x(y)  | Ef | (x)y  | Ef | (x)(y)|
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_0  |     ()     |     ()     |     ()     |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_1  |   (x)(y)   |   dx  dy   |   dx (dy)  |  (dx) dy   |  (dx)(dy)  |
|      |            |            |            |            |            |
| f_2  |   (x) y    |   dx (dy)  |   dx  dy   |  (dx)(dy)  |  (dx) dy   |
|      |            |            |            |            |            |
| f_4  |    x (y)   |  (dx) dy   |  (dx)(dy)  |   dx  dy   |   dx (dy)  |
|      |            |            |            |            |            |
| f_8  |    x  y    |  (dx)(dy)  |  (dx) dy   |   dx (dy)  |   dx  dy   |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_3  |   (x)      |   dx       |   dx       |  (dx)      |  (dx)      |
|      |            |            |            |            |            |
| f_12 |    x       |  (dx)      |  (dx)      |   dx       |   dx       |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_6  |   (x, y)   |  (dx, dy)  | ((dx, dy)) | ((dx, dy)) |  (dx, dy)  |
|      |            |            |            |            |            |
| f_9  |  ((x, y))  | ((dx, dy)) |  (dx, dy)  |  (dx, dy)  | ((dx, dy)) |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_5  |      (y)   |       dy   |      (dy)  |       dy   |      (dy)  |
|      |            |            |            |            |            |
| f_10 |       y    |      (dy)  |       dy   |      (dy)  |       dy   |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_7  |   (x  y)   | ((dx)(dy)) | ((dx) dy)  |  (dx (dy)) |  (dx  dy)  |
|      |            |            |            |            |            |
| f_11 |   (x (y))  | ((dx) dy)  | ((dx)(dy)) |  (dx  dy)  |  (dx (dy)) |
|      |            |            |            |            |            |
| f_13 |  ((x) y)   |  (dx (dy)) |  (dx  dy)  | ((dx)(dy)) | ((dx) dy)  |
|      |            |            |            |            |            |
| f_14 |  ((x)(y))  |  (dx  dy)  |  (dx (dy)) | ((dx) dy)  | ((dx)(dy)) |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_15 |    (())    |    (())    |    (())    |    (())    |    (())    |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
Table A6.  Df Expanded Over Ordinary Features {x, y}
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
|      |     f      |  Df | xy   | Df | x(y)  | Df | (x)y  | Df | (x)(y)|
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_0  |     ()     |     ()     |     ()     |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_1  |   (x)(y)   |   dx  dy   |   dx (dy)  |  (dx) dy   | ((dx)(dy)) |
|      |            |            |            |            |            |
| f_2  |   (x) y    |   dx (dy)  |   dx  dy   | ((dx)(dy)) |  (dx) dy   |
|      |            |            |            |            |            |
| f_4  |    x (y)   |  (dx) dy   | ((dx)(dy)) |   dx  dy   |   dx (dy)  |
|      |            |            |            |            |            |
| f_8  |    x  y    | ((dx)(dy)) |  (dx) dy   |   dx (dy)  |   dx  dy   |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_3  |   (x)      |   dx       |   dx       |   dx       |   dx       |
|      |            |            |            |            |            |
| f_12 |    x       |   dx       |   dx       |   dx       |   dx       |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_6  |   (x, y)   |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |
|      |            |            |            |            |            |
| f_9  |  ((x, y))  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |  (dx, dy)  |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_5  |      (y)   |       dy   |       dy   |       dy   |       dy   |
|      |            |            |            |            |            |
| f_10 |       y    |       dy   |       dy   |       dy   |       dy   |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_7  |   (x  y)   | ((dx)(dy)) |  (dx) dy   |   dx (dy)  |   dx  dy   |
|      |            |            |            |            |            |
| f_11 |   (x (y))  |  (dx) dy   | ((dx)(dy)) |   dx  dy   |   dx (dy)  |
|      |            |            |            |            |            |
| f_13 |  ((x) y)   |   dx (dy)  |   dx  dy   | ((dx)(dy)) |  (dx) dy   |
|      |            |            |            |            |            |
| f_14 |  ((x)(y))  |   dx  dy   |   dx (dy)  |  (dx) dy   | ((dx)(dy)) |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
|      |            |            |            |            |            |
| f_15 |    (())    |     ()     |     ()     |     ()     |     ()     |
|      |            |            |            |            |            |
o------o------------o------------o------------o------------o------------o
o----------o----------o----------o----------o----------o
|          %          |          |          |          |
|    ·     %   T_00   |   T_01   |   T_10   |   T_11   |
|          %          |          |          |          |
o==========o==========o==========o==========o==========o
|          %          |          |          |          |
|   T_00   %   T_00   |   T_01   |   T_10   |   T_11   |
|          %          |          |          |          |
o----------o----------o----------o----------o----------o
|          %          |          |          |          |
|   T_01   %   T_01   |   T_00   |   T_11   |   T_10   |
|          %          |          |          |          |
o----------o----------o----------o----------o----------o
|          %          |          |          |          |
|   T_10   %   T_10   |   T_11   |   T_00   |   T_01   |
|          %          |          |          |          |
o----------o----------o----------o----------o----------o
|          %          |          |          |          |
|   T_11   %   T_11   |   T_10   |   T_01   |   T_00   |
|          %          |          |          |          |
o----------o----------o----------o----------o----------o
o---------o---------o---------o---------o---------o
|         %         |         |         |         |
|    ·    %    e    |    f    |    g    |    h    |
|         %         |         |         |         |
o=========o=========o=========o=========o=========o
|         %         |         |         |         |
|    e    %    e    |    f    |    g    |    h    |
|         %         |         |         |         |
o---------o---------o---------o---------o---------o
|         %         |         |         |         |
|    f    %    f    |    e    |    h    |    g    |
|         %         |         |         |         |
o---------o---------o---------o---------o---------o
|         %         |         |         |         |
|    g    %    g    |    h    |    e    |    f    |
|         %         |         |         |         |
o---------o---------o---------o---------o---------o
|         %         |         |         |         |
|    h    %    h    |    g    |    f    |    e    |
|         %         |         |         |         |
o---------o---------o---------o---------o---------o
Wiki Tables : New Versions
Propositional Forms on Two Variables
Table A1.  Propositional Forms on Two Variables
| L1 | L2 | L3 | L4 | L5 | L6 | 
|  | x : | 1 1 0 0 |  |  |  | 
|  | y : | 1 0 1 0 |  |  |  | 
| f0 | f0000 | 0 0 0 0 | ( ) | false | 0 | 
| f1 | f0001 | 0 0 0 1 | (x)(y) | neither x nor y | ¬x ∧ ¬y | 
| f2 | f0010 | 0 0 1 0 | (x) y | y and not x | ¬x ∧ y | 
| f3 | f0011 | 0 0 1 1 | (x) | not x | ¬x | 
| f4 | f0100 | 0 1 0 0 | x (y) | x and not y | x ∧ ¬y | 
| f5 | f0101 | 0 1 0 1 | (y) | not y | ¬y | 
| f6 | f0110 | 0 1 1 0 | (x, y) | x not equal to y | x ≠ y | 
| f7 | f0111 | 0 1 1 1 | (x y) | not both x and y | ¬x ∨ ¬y | 
| f8 | f1000 | 1 0 0 0 | x y | x and y | x ∧ y | 
| f9 | f1001 | 1 0 0 1 | ((x, y)) | x equal to y | x = y | 
| f10 | f1010 | 1 0 1 0 | y | y | y | 
| f11 | f1011 | 1 0 1 1 | (x (y)) | not x without y | x ⇒ y | 
| f12 | f1100 | 1 1 0 0 | x | x | x | 
| f13 | f1101 | 1 1 0 1 | ((x) y) | not y without x | x ⇐ y | 
| f14 | f1110 | 1 1 1 0 | ((x)(y)) | x or y | x ∨ y | 
| f15 | f1111 | 1 1 1 1 | (( )) | true | 1 | 
Table A2.  Propositional Forms on Two Variables
| L1 | L2 | L3 | L4 | L5 | L6 | 
|  | x : | 1 1 0 0 |  |  |  | 
|  | y : | 1 0 1 0 |  |  |  | 
| f0 | f0000 | 0 0 0 0 | ( ) | false | 0 | 
|  |  | 
| 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 |  |  | 
| neither x nor y not x but y x but not y x and y |  | 
| ¬x ∧ ¬y ¬x ∧ y x ∧ ¬y x ∧ y |  | 
|  |  |  |  |  |  | 
|  |  |  |  | 
| x not equal to y x equal to y |  |  | 
|  |  |  |  |  |  | 
|  |  | 
| 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 |  | 
| (x y) (x (y)) ((x) y) ((x)(y)) |  | 
| not both x and y not x without y not y without x x or y |  | 
| ¬x ∨ ¬y x ⇒ y x ⇐ y x ∨ y |  | 
| f15 | f1111 | 1 1 1 1 | (( )) | true | 1 | 
Differential Propositions
Table 14.  Differential Propositions
|  | A : | 1 1 0 0 |  |  |  | 
|  | dA : | 1 0 1 0 |  |  |  | 
| f0 | g0 | 0 0 0 0 | ( ) | False | 0 | 
|  |  | 
| 0 0 0 10 0 1 0
 0 1 0 0
 1 0 0 0
 |  | 
| (A)(dA)(A) dA
 A (dA)
 A dA
 |  | 
| Neither A nor dANot A but dA
 A but not dA
 A and dA
 |  | 
| ¬A ∧ ¬dA¬A ∧ dA
 A ∧ ¬dA
 A ∧ dA
 |  | 
|  |  |  |  |  |  | 
|  |  |  |  | 
| A not equal to dAA equal to dA
 |  |  | 
|  |  |  |  |  |  | 
|  |  | 
| 0 1 1 11 0 1 1
 1 1 0 1
 1 1 1 0
 |  | 
| (A dA)(A (dA))
 ((A) dA)
 ((A)(dA))
 |  | 
| Not both A and dANot A without dA
 Not dA without A
 A or dA
 |  | 
| ¬A ∨ ¬dAA ⇒ dA
 A ⇐ dA
 A ∨ dA
 |  | 
| f3 | g15 | 1 1 1 1 | (( )) | True | 1 | 
Wiki Tables : Old Versions
Propositional Forms on Two Variables
Table 1.  Propositional Forms on Two Variables
| L1 | L2 | L3 | L4 | L5 | L6 | 
|  | x : | 1 1 0 0 |  |  |  | 
|  | y : | 1 0 1 0 |  |  |  | 
| f0 | f0000 | 0 0 0 0 | ( ) | false | 0 | 
| f1 | f0001 | 0 0 0 1 | (x)(y) | neither x nor y | ¬x ∧ ¬y | 
| f2 | f0010 | 0 0 1 0 | (x) y | y and not x | ¬x ∧ y | 
| f3 | f0011 | 0 0 1 1 | (x) | not x | ¬x | 
| f4 | f0100 | 0 1 0 0 | x (y) | x and not y | x ∧ ¬y | 
| f5 | f0101 | 0 1 0 1 | (y) | not y | ¬y | 
| f6 | f0110 | 0 1 1 0 | (x, y) | x not equal to y | x ≠ y | 
| f7 | f0111 | 0 1 1 1 | (x y) | not both x and y | ¬x ∨ ¬y | 
| f8 | f1000 | 1 0 0 0 | x y | x and y | x ∧ y | 
| f9 | f1001 | 1 0 0 1 | ((x, y)) | x equal to y | x = y | 
| f10 | f1010 | 1 0 1 0 | y | y | y | 
| f11 | f1011 | 1 0 1 1 | (x (y)) | not x without y | x → y | 
| f12 | f1100 | 1 1 0 0 | x | x | x | 
| f13 | f1101 | 1 1 0 1 | ((x) y) | not y without x | x ← y | 
| f14 | f1110 | 1 1 1 0 | ((x)(y)) | x or y | x ∨ y | 
| f15 | f1111 | 1 1 1 1 | (( )) | true | 1 | 
Differential Propositions
Table 14.  Differential Propositions
|  | A : | 1 1 0 0 |  |  |  | 
|  | dA : | 1 0 1 0 |  |  |  | 
| f0 | g0 | 0 0 0 0 | ( ) | False | 0 | 
|  |  | 
| 0 0 0 10 0 1 0
 0 1 0 0
 1 0 0 0
 |  | 
| (A)(dA)(A) dA
 A (dA)
 A dA
 |  | 
| Neither A nor dANot A but dA
 A but not dA
 A and dA
 |  | 
| ¬A ∧ ¬dA¬A ∧ dA
 A ∧ ¬dA
 A ∧ dA
 |  | 
|  |  |  |  |  |  | 
|  |  |  |  | 
| A not equal to dAA equal to dA
 |  |  | 
|  |  |  |  |  |  | 
|  |  | 
| 0 1 1 11 0 1 1
 1 1 0 1
 1 1 1 0
 |  | 
| (A dA)(A (dA))
 ((A) dA)
 ((A)(dA))
 |  | 
| Not both A and dANot A without dA
 Not dA without A
 A or dA
 |  | 
| ¬A ∨ ¬dAA → dA
 A ← dA
 A ∨ dA
 |  | 
| f3 | g15 | 1 1 1 1 | (( )) | True | 1 | 
Wiki TeX Tables
\(\text{Table A1.}~~\text{Propositional Forms on Two Variables}\)
| \(\mathcal{L}_1\) \(\text{Decimal}\) | \(\mathcal{L}_2\) \(\text{Binary}\) | \(\mathcal{L}_3\) \(\text{Vector}\) | \(\mathcal{L}_4\) \(\text{Cactus}\) | \(\mathcal{L}_5\) \(\text{English}\) | \(\mathcal{L}_6\) \(\text{Ordinary}\) | 
|  | \(x\colon\!\) | \(1~1~0~0\!\) |  |  |  | 
|  | \(y\colon\!\) | \(1~0~1~0\!\) |  |  |  | 
| \(f_{0}\!\) | \(f_{0000}\!\) | \(0~0~0~0\!\) | \((~)\!\) | \(\text{false}\!\) | \(0\!\) | 
| \(f_{1}\!\) | \(f_{0001}\!\) | \(0~0~0~1\!\) | \((x)(y)\!\) | \(\text{neither}~ x ~\text{nor}~ y\!\) | \(\lnot x \land \lnot y\!\) | 
| \(f_{2}\!\) | \(f_{0010}\!\) | \(0~0~1~0\!\) | \((x)~y\!\) | \(y ~\text{without}~ x\!\) | \(\lnot x \land y\!\) | 
| \(f_{3}\!\) | \(f_{0011}\!\) | \(0~0~1~1\!\) | \((x)\!\) | \(\text{not}~ x\!\) | \(\lnot x\!\) | 
| \(f_{4}\!\) | \(f_{0100}\!\) | \(0~1~0~0\!\) | \(x~(y)\!\) | \(x ~\text{without}~ y\!\) | \(x \land \lnot y\!\) | 
| \(f_{5}\!\) | \(f_{0101}\!\) | \(0~1~0~1\!\) | \((y)\!\) | \(\text{not}~ y\!\) | \(\lnot y\!\) | 
| \(f_{6}\!\) | \(f_{0110}\!\) | \(0~1~1~0\!\) | \((x,~y)\!\) | \(x ~\text{not equal to}~ y\!\) | \(x \ne y\!\) | 
| \(f_{7}\!\) | \(f_{0111}\!\) | \(0~1~1~1\!\) | \((x~y)\!\) | \(\text{not both}~ x ~\text{and}~ y\!\) | \(\lnot x \lor \lnot y\!\) | 
| \(f_{8}\!\) | \(f_{1000}\!\) | \(1~0~0~0\!\) | \(x~y\!\) | \(x ~\text{and}~ y\!\) | \(x \land y\!\) | 
| \(f_{9}\!\) | \(f_{1001}\!\) | \(1~0~0~1\!\) | \(((x,~y))\!\) | \(x ~\text{equal to}~ y\!\) | \(x = y\!\) | 
| \(f_{10}\!\) | \(f_{1010}\!\) | \(1~0~1~0\!\) | \(y\!\) | \(y\!\) | \(y\!\) | 
| \(f_{11}\!\) | \(f_{1011}\!\) | \(1~0~1~1\!\) | \((x~(y))\!\) | \(\text{not}~ x ~\text{without}~ y\!\) | \(x \Rightarrow y\!\) | 
| \(f_{12}\!\) | \(f_{1100}\!\) | \(1~1~0~0\!\) | \(x\!\) | \(x\!\) | \(x\!\) | 
| \(f_{13}\!\) | \(f_{1101}\!\) | \(1~1~0~1\!\) | \(((x)~y)\!\) | \(\text{not}~ y ~\text{without}~ x\!\) | \(x \Leftarrow y\!\) | 
| \(f_{14}\!\) | \(f_{1110}\!\) | \(1~1~1~0\!\) | \(((x)(y))\!\) | \(x ~\text{or}~ y\!\) | \(x \lor y\!\) | 
| \(f_{15}\!\) | \(f_{1111}\!\) | \(1~1~1~1\!\) | \(((~))\!\) | \(\text{true}\!\) | \(1\!\) | 
\(\text{Table A1.}~~\text{Propositional Forms on Two Variables}\)
| \(\mathcal{L}_1\) \(\text{Decimal}\) | \(\mathcal{L}_2\) \(\text{Binary}\) | \(\mathcal{L}_3\) \(\text{Vector}\) | \(\mathcal{L}_4\) \(\text{Cactus}\) | \(\mathcal{L}_5\) \(\text{English}\) | \(\mathcal{L}_6\) \(\text{Ordinary}\) | 
|  | \(x\colon\!\) | \(1~1~0~0\!\) |  |  |  | 
|  | \(y\colon\!\) | \(1~0~1~0\!\) |  |  |  | 
| \(\begin{matrix}
f_0
\'"`UNIQ-MathJax1-QINU`"'
'''Generalized''' or '''n-ary''' XOR is true when the number of 1-bits  is odd.
'"`UNIQ--pre-00000012-QINU`"'
'"`UNIQ--pre-00000013-QINU`"'
'"`UNIQ--pre-00000014-QINU`"'
'"`UNIQ-MathJax2-QINU`"'
===='"`UNIQ--h-32--QINU`"'[[Logical implication]]====
The '''material conditional''' and '''logical implication''' are both associated with an [[logical operation|operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if the first operand is true and the second operand is false.
The [[truth table]] associated with the material conditional '''if p then q''' (symbolized as '''p → q''') and the logical implication '''p implies q''' (symbolized as '''p ⇒ q''') is as follows:
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%"
|+ '''Logical Implication'''
|- style="background:aliceblue"
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | p ⇒ q
|-
| F || F || T
|-
| F || T || T
|-
| T || F || F
|-
| T || T || T
|}
<br>
===='"`UNIQ--h-33--QINU`"'[[Logical NAND]]====
The '''NAND operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''false'' if and only if both of its operands are true.  In other words, it produces a value of ''true'' if and only if at least one of its operands is false.
The [[truth table]] of '''p NAND q''' (also written as '''p | q''' or '''p ↑ q''') is as follows:
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%"
|+ '''Logical NAND'''
|- style="background:aliceblue"
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | p ↑ q
|-
| F || F || T
|-
| F || T || T
|-
| T || F || T
|-
| T || T || F
|}
<br>
===='"`UNIQ--h-34--QINU`"'[[Logical NNOR]]====
The '''NNOR operation''' is a [[logical operation]] on two [[logical value]]s, typically the values of two [[proposition]]s, that produces a value of ''true'' if and only if both of its operands are false.  In other words, it produces a value of ''false'' if and only if at least one of its operands is true.
The [[truth table]] of '''p NNOR q''' (also written as '''p ⊥ q''' or '''p ↓ q''') is as follows:
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:mintcream; font-weight:bold; text-align:center; width:45%"
|+ '''Logical NOR'''
|- style="background:aliceblue"
! style="width:15%" | p
! style="width:15%" | q
! style="width:15%" | p ↓ q
|-
| F || F || T
|-
| F || T || F
|-
| T || F || F
|-
| T || T || F
|}
<br>
=='"`UNIQ--h-35--QINU`"'Relational Tables==
==='"`UNIQ--h-36--QINU`"'Sign Relations===
{| cellpadding="4"
| width="20px" |  
| align="center" | '''O''' || = || Object Domain
|-
| width="20px" |  
| align="center" | '''S''' || = || Sign Domain
|-
| width="20px" |  
| align="center" | '''I''' || = || Interpretant Domain
|}
<br>
{| cellpadding="4"
| width="20px" |  
| align="center" | '''O'''
| =
| {Ann, Bob}
| =
| {A, B}
|-
| width="20px" |  
| align="center" | '''S'''
| =
| {"Ann", "Bob", "I", "You"}
| =
| {"A", "B", "i", "u"}
|-
| width="20px" |  
| align="center" | '''I'''
| =
| {"Ann", "Bob", "I", "You"}
| =
| {"A", "B", "i", "u"}
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>A</sub> = Sign Relation of Interpreter A
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"i"'''
|-
| '''A''' || '''"i"''' || '''"A"'''
|-
| '''A''' || '''"i"''' || '''"i"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"u"'''
|-
| '''B''' || '''"u"''' || '''"B"'''
|-
| '''B''' || '''"u"''' || '''"u"'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>B</sub> = Sign Relation of Interpreter B
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"u"'''
|-
| '''A''' || '''"u"''' || '''"A"'''
|-
| '''A''' || '''"u"''' || '''"u"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"i"'''
|-
| '''B''' || '''"i"''' || '''"B"'''
|-
| '''B''' || '''"i"''' || '''"i"'''
|}
<br>
==='"`UNIQ--h-37--QINU`"'Triadic Relations===
===='"`UNIQ--h-38--QINU`"'Algebraic Examples====
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>0</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 0}
|- style="background:paleturquoise"
! X !! Y !! Z
|-
| '''0''' || '''0''' || '''0'''
|-
| '''0''' || '''1''' || '''1'''
|-
| '''1''' || '''0''' || '''1'''
|-
| '''1''' || '''1''' || '''0'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>1</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 1}
|- style="background:paleturquoise"
! X !! Y !! Z
|-
| '''0''' || '''0''' || '''1'''
|-
| '''0''' || '''1''' || '''0'''
|-
| '''1''' || '''0''' || '''0'''
|-
| '''1''' || '''1''' || '''1'''
|}
<br>
===='"`UNIQ--h-39--QINU`"'Semiotic Examples====
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>A</sub> = Sign Relation of Interpreter A
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"i"'''
|-
| '''A''' || '''"i"''' || '''"A"'''
|-
| '''A''' || '''"i"''' || '''"i"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"u"'''
|-
| '''B''' || '''"u"''' || '''"B"'''
|-
| '''B''' || '''"u"''' || '''"u"'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>B</sub> = Sign Relation of Interpreter B
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"u"'''
|-
| '''A''' || '''"u"''' || '''"A"'''
|-
| '''A''' || '''"u"''' || '''"u"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"i"'''
|-
| '''B''' || '''"i"''' || '''"B"'''
|-
| '''B''' || '''"i"''' || '''"i"'''
|}
<br>
==='"`UNIQ--h-40--QINU`"'Dyadic Projections===
{| cellpadding="4"
| width="20px" |  
| '''L'''<sub>OS</sub>
| =
| ''proj''<sub>OS</sub>('''L''')
| =
| { (''o'', ''s'') ∈ '''O''' × '''S''' : (''o'', ''s'', ''i'') ∈ '''L''' for some ''i'' ∈ '''I''' }
|-
| width="20px" |  
| '''L'''<sub>SO</sub>
| =
| ''proj''<sub>SO</sub>('''L''')
| =
| { (''s'', ''o'') ∈ '''S''' × '''O''' : (''o'', ''s'', ''i'') ∈ '''L''' for some ''i'' ∈ '''I''' }
|-
| width="20px" |  
| '''L'''<sub>IS</sub>
| =
| ''proj''<sub>IS</sub>('''L''')
| =
| { (''i'', ''s'') ∈ '''I''' × '''S''' : (''o'', ''s'', ''i'') ∈ '''L''' for some ''o'' ∈ '''O''' }
|-
| width="20px" |  
| '''L'''<sub>SI</sub>
| =
| ''proj''<sub>SI</sub>('''L''')
| =
| { (''s'', ''i'') ∈ '''S''' × '''I''' : (''o'', ''s'', ''i'') ∈ '''L''' for some ''o'' ∈ '''O''' }
|-
| width="20px" |  
| '''L'''<sub>OI</sub>
| =
| ''proj''<sub>OI</sub>('''L''')
| =
| { (''o'', ''i'') ∈ '''O''' × '''I''' : (''o'', ''s'', ''i'') ∈ '''L''' for some ''s'' ∈ '''S''' }
|-
| width="20px" |  
| '''L'''<sub>IO</sub>
| =
| ''proj''<sub>IO</sub>('''L''')
| =
| { (''i'', ''o'') ∈ '''I''' × '''O''' : (''o'', ''s'', ''i'') ∈ '''L''' for some ''s'' ∈ '''S''' }
|}
<br>
===='"`UNIQ--h-41--QINU`"'Method 1 : Subtitles as Captions====
{| align="center" style="width:90%"
|
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+  ''proj''<sub>OS</sub>('''L'''<sub>A</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
|
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ ''proj''<sub>OS</sub>('''L'''<sub>B</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
|}
<br>
{| align="center" style="width:90%"
|
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ ''proj''<sub>SI</sub>('''L'''<sub>A</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"i"'''
|-
| '''"i"''' || '''"A"'''
|-
| '''"i"''' || '''"i"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"u"'''
|-
| '''"u"''' || '''"B"'''
|-
| '''"u"''' || '''"u"'''
|}
|
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ ''proj''<sub>SI</sub>('''L'''<sub>B</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"u"'''
|-
| '''"u"''' || '''"A"'''
|-
| '''"u"''' || '''"u"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"i"'''
|-
| '''"i"''' || '''"B"'''
|-
| '''"i"''' || '''"i"'''
|}
|}
<br>
{| align="center" style="width:90%"
|
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ ''proj''<sub>OI</sub>('''L'''<sub>A</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
|
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ ''proj''<sub>OI</sub>('''L'''<sub>B</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
|}
<br>
===='"`UNIQ--h-42--QINU`"'Method 2 : Subtitles as Top Rows====
{| align="center" style="width:90%"
| align="center" style="width:45%" | ''proj''<sub>OS</sub>('''L'''<sub>A</sub>)
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
| align="center" style="width:45%" | ''proj''<sub>OS</sub>('''L'''<sub>B</sub>)
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
|}
<br>
{| align="center" style="width:90%"
| align="center" style="width:45%" | ''proj''<sub>SI</sub>('''L'''<sub>A</sub>)
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"i"'''
|-
| '''"i"''' || '''"A"'''
|-
| '''"i"''' || '''"i"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"u"'''
|-
| '''"u"''' || '''"B"'''
|-
| '''"u"''' || '''"u"'''
|}
| align="center" style="width:45%" | ''proj''<sub>SI</sub>('''L'''<sub>B</sub>)
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"u"'''
|-
| '''"u"''' || '''"A"'''
|-
| '''"u"''' || '''"u"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"i"'''
|-
| '''"i"''' || '''"B"'''
|-
| '''"i"''' || '''"i"'''
|}
|}
<br>
{| align="center" style="width:90%"
| align="center" style="width:45%" | ''proj''<sub>OI</sub>('''L'''<sub>A</sub>)
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
| align="center" style="width:45%" | ''proj''<sub>OI</sub>('''L'''<sub>B</sub>)
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
|}
<br>
==='"`UNIQ--h-43--QINU`"'Relation Reduction===
===='"`UNIQ--h-44--QINU`"'Method 1 : Subtitles as Captions====
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>0</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 0}
|- style="background:paleturquoise"
! X !! Y !! Z
|-
| '''0''' || '''0''' || '''0'''
|-
| '''0''' || '''1''' || '''1'''
|-
| '''1''' || '''0''' || '''1'''
|-
| '''1''' || '''1''' || '''0'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>1</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 1}
|- style="background:paleturquoise"
! X !! Y !! Z
|-
| '''0''' || '''0''' || '''1'''
|-
| '''0''' || '''1''' || '''0'''
|-
| '''1''' || '''0''' || '''0'''
|-
| '''1''' || '''1''' || '''1'''
|}
<br>
{| align="center" style="width:90%"
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XY''</sub>('''L'''<sub>0</sub>)
|- style="background:paleturquoise"
! X !! Y
|-
| '''0''' || '''0'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|-
| '''1''' || '''1'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XZ''</sub>('''L'''<sub>0</sub>)
|- style="background:paleturquoise"
! X !! Z
|-
| '''0''' ||  '''0'''
|-
| '''0''' ||  '''1'''
|-
| '''1''' ||  '''1'''
|-
| '''1''' ||  '''0'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''YZ''</sub>('''L'''<sub>0</sub>)
|- style="background:paleturquoise"
! Y !! Z
|-
| '''0''' || '''0'''
|-
| '''1''' || '''1'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|}
|}
<br>
{| align="center" style="width:90%"
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XY''</sub>('''L'''<sub>1</sub>)
|- style="background:paleturquoise"
! X !! Y
|-
| '''0''' || '''0'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|-
| '''1''' || '''1'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XZ''</sub>('''L'''<sub>1</sub>)
|- style="background:paleturquoise"
! X !! Z
|-
| '''0''' || '''1'''
|-
| '''0''' || '''0'''
|-
| '''1''' || '''0'''
|-
| '''1''' || '''1'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''YZ''</sub>('''L'''<sub>1</sub>)
|- style="background:paleturquoise"
! Y !! Z
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|-
| '''0''' || '''0'''
|-
| '''1''' || '''1'''
|}
|}
<br>
{| align="center" cellpadding="4" style="text-align:center; width:90%"
| proj<sub>''XY''</sub>('''L'''<sub>0</sub>) = proj<sub>''XY''</sub>('''L'''<sub>1</sub>)
| proj<sub>''XZ''</sub>('''L'''<sub>0</sub>) = proj<sub>''XZ''</sub>('''L'''<sub>1</sub>)
| proj<sub>''YZ''</sub>('''L'''<sub>0</sub>) = proj<sub>''YZ''</sub>('''L'''<sub>1</sub>)
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>A</sub> = Sign Relation of Interpreter A
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"i"'''
|-
| '''A''' || '''"i"''' || '''"A"'''
|-
| '''A''' || '''"i"''' || '''"i"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"u"'''
|-
| '''B''' || '''"u"''' || '''"B"'''
|-
| '''B''' || '''"u"''' || '''"u"'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>B</sub> = Sign Relation of Interpreter B
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"u"'''
|-
| '''A''' || '''"u"''' || '''"A"'''
|-
| '''A''' || '''"u"''' || '''"u"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"i"'''
|-
| '''B''' || '''"i"''' || '''"B"'''
|-
| '''B''' || '''"i"''' || '''"i"'''
|}
<br>
{| align="center" style="width:90%"
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XY''</sub>('''L'''<sub>A</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XZ''</sub>('''L'''<sub>A</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''YZ''</sub>('''L'''<sub>A</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"i"'''
|-
| '''"i"''' || '''"A"'''
|-
| '''"i"''' || '''"i"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"u"'''
|-
| '''"u"''' || '''"B"'''
|-
| '''"u"''' || '''"u"'''
|}
|}
<br>
{| align="center" style="width:90%"
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XY''</sub>('''L'''<sub>B</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''XZ''</sub>('''L'''<sub>B</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
|
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|+ proj<sub>''YZ''</sub>('''L'''<sub>B</sub>)
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"u"'''
|-
| '''"u"''' || '''"A"'''
|-
| '''"u"''' || '''"u"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"i"'''
|-
| '''"i"''' || '''"B"'''
|-
| '''"i"''' || '''"i"'''
|}
|}
<br>
{| align="center" cellpadding="4" style="text-align:center; width:90%"
| proj<sub>''XY''</sub>('''L'''<sub>A</sub>) ≠ proj<sub>''XY''</sub>('''L'''<sub>B</sub>)
| proj<sub>''XZ''</sub>('''L'''<sub>A</sub>) ≠ proj<sub>''XZ''</sub>('''L'''<sub>B</sub>)
| proj<sub>''YZ''</sub>('''L'''<sub>A</sub>) ≠ proj<sub>''YZ''</sub>('''L'''<sub>B</sub>)
|}
<br>
===='"`UNIQ--h-45--QINU`"'Method 2 : Subtitles as Top Rows====
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>0</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 0}
|- style="background:paleturquoise"
! X !! Y !! Z
|-
| '''0''' || '''0''' || '''0'''
|-
| '''0''' || '''1''' || '''1'''
|-
| '''1''' || '''0''' || '''1'''
|-
| '''1''' || '''1''' || '''0'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>1</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 1}
|- style="background:paleturquoise"
! X !! Y !! Z
|-
| '''0''' || '''0''' || '''1'''
|-
| '''0''' || '''1''' || '''0'''
|-
| '''1''' || '''0''' || '''0'''
|-
| '''1''' || '''1''' || '''1'''
|}
<br>
{| align="center" style="width:90%"
| align="center" | proj<sub>''XY''</sub>('''L'''<sub>0</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! X !! Y
|-
| '''0''' || '''0'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|-
| '''1''' || '''1'''
|}
| align="center" | proj<sub>''XZ''</sub>('''L'''<sub>0</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! X !! Z
|-
| '''0''' ||  '''0'''
|-
| '''0''' ||  '''1'''
|-
| '''1''' ||  '''1'''
|-
| '''1''' ||  '''0'''
|}
| align="center" | proj<sub>''YZ''</sub>('''L'''<sub>0</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! Y !! Z
|-
| '''0''' || '''0'''
|-
| '''1''' || '''1'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|}
|}
<br>
{| align="center" style="width:90%"
| align="center" | proj<sub>''XY''</sub>('''L'''<sub>1</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! X !! Y
|-
| '''0''' || '''0'''
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|-
| '''1''' || '''1'''
|}
| align="center" | proj<sub>''XZ''</sub>('''L'''<sub>1</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! X !! Z
|-
| '''0''' || '''1'''
|-
| '''0''' || '''0'''
|-
| '''1''' || '''0'''
|-
| '''1''' || '''1'''
|}
| align="center" | proj<sub>''YZ''</sub>('''L'''<sub>1</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! Y !! Z
|-
| '''0''' || '''1'''
|-
| '''1''' || '''0'''
|-
| '''0''' || '''0'''
|-
| '''1''' || '''1'''
|}
|}
<br>
{| align="center" cellpadding="4" style="text-align:center; width:90%"
| proj<sub>''XY''</sub>('''L'''<sub>0</sub>) = proj<sub>''XY''</sub>('''L'''<sub>1</sub>)
| proj<sub>''XZ''</sub>('''L'''<sub>0</sub>) = proj<sub>''XZ''</sub>('''L'''<sub>1</sub>)
| proj<sub>''YZ''</sub>('''L'''<sub>0</sub>) = proj<sub>''YZ''</sub>('''L'''<sub>1</sub>)
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>A</sub> = Sign Relation of Interpreter A
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"i"'''
|-
| '''A''' || '''"i"''' || '''"A"'''
|-
| '''A''' || '''"i"''' || '''"i"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"u"'''
|-
| '''B''' || '''"u"''' || '''"B"'''
|-
| '''B''' || '''"u"''' || '''"u"'''
|}
<br>
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%"
|+ '''L'''<sub>B</sub> = Sign Relation of Interpreter B
|- style="background:paleturquoise"
! style="width:20%" | Object
! style="width:20%" | Sign
! style="width:20%" | Interpretant
|-
| '''A''' || '''"A"''' || '''"A"'''
|-
| '''A''' || '''"A"''' || '''"u"'''
|-
| '''A''' || '''"u"''' || '''"A"'''
|-
| '''A''' || '''"u"''' || '''"u"'''
|-
| '''B''' || '''"B"''' || '''"B"'''
|-
| '''B''' || '''"B"''' || '''"i"'''
|-
| '''B''' || '''"i"''' || '''"B"'''
|-
| '''B''' || '''"i"''' || '''"i"'''
|}
<br>
{| align="center" style="width:90%"
| align="center" style="width:30%" | proj<sub>''XY''</sub>('''L'''<sub>A</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
| align="center" style="width:30%" | proj<sub>''XZ''</sub>('''L'''<sub>A</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"i"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"u"'''
|}
| align="center" style="width:30%" | proj<sub>''YZ''</sub>('''L'''<sub>A</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"i"'''
|-
| '''"i"''' || '''"A"'''
|-
| '''"i"''' || '''"i"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"u"'''
|-
| '''"u"''' || '''"B"'''
|-
| '''"u"''' || '''"u"'''
|}
|}
<br>
{| align="center" style="width:90%"
| align="center" style="width:30%" | proj<sub>''XY''</sub>('''L'''<sub>B</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Sign
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
| align="center" style="width:30%" | proj<sub>''XZ''</sub>('''L'''<sub>B</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Object
! style="width:50%" | Interpretant
|-
| '''A''' || '''"A"'''
|-
| '''A''' || '''"u"'''
|-
| '''B''' || '''"B"'''
|-
| '''B''' || '''"i"'''
|}
| align="center" style="width:30%" | proj<sub>''YZ''</sub>('''L'''<sub>B</sub>)
{| border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
|- style="background:paleturquoise"
! style="width:50%" | Sign
! style="width:50%" | Interpretant
|-
| '''"A"''' || '''"A"'''
|-
| '''"A"''' || '''"u"'''
|-
| '''"u"''' || '''"A"'''
|-
| '''"u"''' || '''"u"'''
|-
| '''"B"''' || '''"B"'''
|-
| '''"B"''' || '''"i"'''
|-
| '''"i"''' || '''"B"'''
|-
| '''"i"''' || '''"i"'''
|}
|}
<br>
{| align="center" cellpadding="4" style="text-align:center; width:90%"
| proj<sub>''XY''</sub>('''L'''<sub>A</sub>) ≠ proj<sub>''XY''</sub>('''L'''<sub>B</sub>)
| proj<sub>''XZ''</sub>('''L'''<sub>A</sub>) ≠ proj<sub>''XZ''</sub>('''L'''<sub>B</sub>)
| proj<sub>''YZ''</sub>('''L'''<sub>A</sub>) ≠ proj<sub>''YZ''</sub>('''L'''<sub>B</sub>)
|}
<br>
==='"`UNIQ--h-46--QINU`"'Formatted Text Display===
: So in a triadic fact, say, the example <br>
{| align="center" cellspacing="8" style="width:72%"
| align="center" | ''A'' gives ''B'' to ''C''
|}
: we make no distinction in the ordinary logic of relations between the ''[[subject (grammar)|subject]] [[nominative]]'', the ''[[direct object]]'', and the ''[[indirect object]]''.  We say that the proposition has three ''logical subjects''.  We regard it as a mere affair of English grammar that there are six ways of expressing this: <br>
{| align="center" cellspacing="8" style="width:72%"
| style="width:36%" | ''A'' gives ''B'' to ''C''
| style="width:36%" | ''A'' benefits ''C'' with ''B''
|-
| ''B'' enriches ''C'' at expense of ''A''
| ''C'' receives ''B'' from ''A''
|-
| ''C'' thanks ''A'' for ''B''
| ''B'' leaves ''A'' for ''C''
|}
: These six sentences express one and the same indivisible phenomenon. (C.S. Peirce, "The Categories Defended", MS 308 (1903), EP 2, 170-171).
=='"`UNIQ--h-47--QINU`"'Work Area==
{| border="1" cellspacing="0" cellpadding="0" style="text-align:center"
|+ Binary Operations
|-
! style="width:2em" | x<sub>0</sub>
! style="width:2em" | x<sub>1</sub>
| style="width:2em" | <sup>2</sup>f<sub>0</sub>
| style="width:2em" | <sup>2</sup>f<sub>1</sub>
| style="width:2em" | <sup>2</sup>f<sub>2</sub>
| style="width:2em" | <sup>2</sup>f<sub>3</sub>
| style="width:2em" | <sup>2</sup>f<sub>4</sub>
| style="width:2em" | <sup>2</sup>f<sub>5</sub>
| style="width:2em" | <sup>2</sup>f<sub>6</sub>
| style="width:2em" | <sup>2</sup>f<sub>7</sub>
| style="width:2em" | <sup>2</sup>f<sub>8</sub>
| style="width:2em" | <sup>2</sup>f<sub>9</sub>
| style="width:2em" | <sup>2</sup>f<sub>10</sub>
| style="width:2em" | <sup>2</sup>f<sub>11</sub>
| style="width:2em" | <sup>2</sup>f<sub>12</sub>
| style="width:2em" | <sup>2</sup>f<sub>13</sub>
| style="width:2em" | <sup>2</sup>f<sub>14</sub>
| style="width:2em" | <sup>2</sup>f<sub>15</sub>
|-
| 0 || 0 || 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1
|-
| 1 || 0 || 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1
|-
| 0 || 1 || 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 || 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1
|-
| 1 || 1 || 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1
|}
<br>
==='"`UNIQ--h-48--QINU`"'Draft 1===
<center><table>
<caption>TRUTH TABLES FOR THE BOOLEAN OPERATIONS OF ARITY UP TO 2</caption>
<tr valign="top">
<td><table border="5" cellspacing="0">
<caption>Constants</caption>
<tr><td></td>
<td><sup>0</sup>f<sub>0</sub></td> <td><sup>0</sup>f<sub>1</sub></td>
</tr> <tr><td></td>
<td align="center">0</td> <td align="center">1</td>
</tr></table></td><td>    </td>
<td><table border="5" cellspacing="0"><caption>Unary Operations</caption><tr>
<td>x<sub>0</sub></td> <td></td>
<td><sup>1</sup>f<sub>0 </sub></td> <td><sup>1</sup>f<sub>1 </sub></td>
<td><sup>1</sup>f<sub>2 </sub></td> <td><sup>1</sup>f<sub>3 </sub></td>
</tr><tr> <td align="center">0</td> <td></td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
</tr> <tr> <td align="center">1</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
</tr></table></td><td>    </td>
<td><table border="5" cellspacing="0"><caption>Binary Operations</caption><tr>
<td>x<sub>0</sub></td> <td>x<sub>1</sub></td>
<td></td>
<td><sup>2</sup>f<sub>0</sub></td> <td><sup>2</sup>f<sub>1 </sub></td>
<td><sup> 2</sup>f<sub>2 </sub></td> <td><sup>2</sup>f<sub>3 </sub></td>
<td><sup>2</sup>f<sub>4 </sub></td> <td><sup>2</sup>f<sub>5 </sub></td>
<td><sup>2</sup>f<sub>6 </sub></td> <td><sup>2</sup>f<sub>7 </sub></td>
<td><sup>2</sup>f<sub>8 </sub></td> <td><sup>2</sup>f<sub>9 </sub></td>
<td><sup>2</sup>f<sub>10</sub></td> <td><sup>2</sup>f<sub>11</sub></td>
<td><sup>2</sup>f<sub>12</sub></td> <td><sup>2</sup>f<sub>13</sub></td>
<td><sup>2</sup>f<sub>14</sub></td> <td><sup>2</sup>f<sub>15</sub></td>
</tr><tr> <td align="center">0</td> <td align="center">0</td> <td></td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
</tr> <tr> <td align="center">1</td> <td align="center">0</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
</tr> <tr> <td align="center">0</td> <td align="center">1</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
</tr> <tr> <td align="center">1</td> <td align="center">1</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
</tr> </table></td>
</table></center>
==='"`UNIQ--h-49--QINU`"'Draft 2===
<center><table>
<caption>TRUTH TABLES FOR THE BOOLEAN OPERATIONS OF ARITY UP TO 2</caption>
<tr valign="top">
<td><table border="5" cellspacing="0">
<caption>Constants</caption>
<tr><td></td>
<td><sup>0</sup>f<sub>0</sub></td> <td><sup>0</sup>f<sub>1</sub></td>
</tr> <tr><td></td>
<td align="center">0</td> <td align="center">1</td>
</tr></table></td><td>    </td>
<td><table border="5" cellspacing="0"><caption>Unary Operations</caption><tr>
<td>x<sub>0</sub></td> <td></td>
<td><sup>1</sup>f<sub>0 </sub></td> <td><sup>1</sup>f<sub>1 </sub></td>
<td><sup>1</sup>f<sub>2 </sub></td> <td><sup>1</sup>f<sub>3 </sub></td>
</tr><tr> <td align="center">0</td> <td></td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
</tr> <tr> <td align="center">1</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
</tr></table></td><td>    </td>
<td><table border="5" cellspacing="0"><caption>Binary Operations</caption><tr>
<td>x<sub>0</sub></td> <td>x<sub>1</sub></td>
<td></td>
<td><sup>2</sup>f<sub>0</sub></td> <td><sup>2</sup>f<sub>1 </sub></td>
<td><sup> 2</sup>f<sub>2 </sub></td> <td><sup>2</sup>f<sub>3 </sub></td>
<td><sup>2</sup>f<sub>4 </sub></td> <td><sup>2</sup>f<sub>5 </sub></td>
<td><sup>2</sup>f<sub>6 </sub></td> <td><sup>2</sup>f<sub>7 </sub></td>
<td><sup>2</sup>f<sub>8 </sub></td> <td><sup>2</sup>f<sub>9 </sub></td>
<td><sup>2</sup>f<sub>10</sub></td> <td><sup>2</sup>f<sub>11</sub></td>
<td><sup>2</sup>f<sub>12</sub></td> <td><sup>2</sup>f<sub>13</sub></td>
<td><sup>2</sup>f<sub>14</sub></td> <td><sup>2</sup>f<sub>15</sub></td>
</tr><tr> <td align="center">0</td> <td align="center">0</td> <td></td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">1</td> <td align="center">0</td> <td align="center">1</td>
</tr> <tr> <td align="center">1</td> <td align="center">0</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">1</td> <td align="center">1</td>
</tr> <tr> <td align="center">0</td> <td align="center">1</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
</tr> <tr> <td align="center">1</td> <td align="center">1</td> <td></td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">0</td> <td align="center">0</td> <td align="center">0</td> <td align="center">0</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
<td align="center">1</td> <td align="center">1</td> <td align="center">1</td> <td align="center">1</td>
</tr> </table></td>
</table></center>
=='"`UNIQ--h-50--QINU`"'Inquiry and Analogy==
==='"`UNIQ--h-51--QINU`"'Test Patterns===
{| align="center"
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
|-
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
|}<br>
{| align="center"
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
|-
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
| style="background:black; color:white" | 0
| style="background:white; color:black" | 1
|}<br>
{| align="center"
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
|-
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
| style="background:white; color:black" | 0
| style="background:black; color:white" | 1
|}<br>
==='"`UNIQ--h-52--QINU`"'Table 10===
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
|+ '''Table 10.  Higher Order Propositions (''n'' = 1)'''
|- style="background:ghostwhite"
| align="right" | \(x\):
 | 1 0 | \(f\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | 
| \(f_0\) | 0 0 | \(0\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_1\) | 0 1 | \((x)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_2\) | 1 0 | \(x\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_3\) | 1 1 | \(1\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
Table 10.  Higher Order Propositions (n = 1)
| \(x:\) | 1 0 | \(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | 
| \(f_0\) | 0 0 | \(0\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_1\) | 0 1 | \((x)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_2\) | 1 0 | \(x\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_3\) | 1 1 | \(1\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
Table 11
Table 11.  Interpretive Categories for Higher Order Propositions (n = 1)
| Measure | Happening | Exactness | Existence | Linearity | Uniformity | Information | 
| \(m_0\!\) | Nothing happens |  |  |  |  |  | 
| \(m_1\!\) |  | Just false | Nothing exists |  |  |  | 
| \(m_2\!\) |  | Just not \(x\!\) |  |  |  |  | 
| \(m_3\!\) |  |  | Nothing is \(x\!\) |  |  |  | 
| \(m_4\!\) |  | Just \(x\!\) |  |  |  |  | 
| \(m_5\!\) |  |  | Everything is \(x\!\) | \(f\!\) is linear |  |  | 
| \(m_6\!\) |  |  |  |  | \(f\!\) is not uniform | \(f\!\) is informed | 
| \(m_7\!\) |  | Not just true |  |  |  |  | 
| \(m_8\!\) |  | Just true |  |  |  |  | 
| \(m_9\!\) |  |  |  |  | \(f\!\) is uniform | \(f\!\) is not informed | 
| \(m_{10}\!\) |  |  | Something is not \(x\!\) | \(f\!\) is not linear |  |  | 
| \(m_{11}\!\) |  | Not just \(x\!\) |  |  |  |  | 
| \(m_{12}\!\) |  |  | Something is \(x\!\) |  |  |  | 
| \(m_{13}\!\) |  | Not just not \(x\!\) |  |  |  |  | 
| \(m_{14}\!\) |  | Not just false | Something exists |  |  |  | 
| \(m_{15}\!\) | Anything happens |  |  |  |  |  | 
Table 12
Table 12.  Higher Order Propositions (n = 2)
| \(x:\) \(y:\)
 | 1100 1010
 | \(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | \(m_{16}\) | \(m_{17}\) | \(m_{18}\) | \(m_{19}\) | \(m_{20}\) | \(m_{21}\) | \(m_{22}\) | \(m_{23}\) | 
| \(f_0\) | 0000 | \((~)\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_1\) | 0001 | \((x)(y)\!\) |  |  | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_2\) | 0010 | \((x) y\!\) |  |  |  |  | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_3\) | 0011 | \((x)\!\) |  |  |  |  |  |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_4\) | 0100 | \(x (y)\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| \(f_5\) | 0101 | \((y)\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_6\) | 0110 | \((x, y)\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_7\) | 0111 | \((x y)\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_8\) | 1000 | \(x y\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_9\) | 1001 | \(((x, y))\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_{10}\) | 1010 | \(y\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_{11}\) | 1011 | \((x (y))\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_{12}\) | 1100 | \(x\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_{13}\) | 1101 | \(((x) y)\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_{14}\) | 1110 | \(((x)(y))\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
| \(f_{15}\) | 1111 | \(((~))\!\) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 
Table 12.  Higher Order Propositions (n = 2)
| \(u:\) \(v:\)
 | 1100 1010
 | \(f\!\) | \(m_0\) | \(m_1\) | \(m_2\) | \(m_3\) | \(m_4\) | \(m_5\) | \(m_6\) | \(m_7\) | \(m_8\) | \(m_9\) | \(m_{10}\) | \(m_{11}\) | \(m_{12}\) | \(m_{13}\) | \(m_{14}\) | \(m_{15}\) | \(m_{16}\) | \(m_{17}\) | \(m_{18}\) | \(m_{19}\) | \(m_{20}\) | \(m_{21}\) | \(m_{22}\) | \(m_{23}\) | 
| \(f_0\) | 0000 | \((~)\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_2\) | 0010 | \((u) v\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_3\) | 0011 | \((u)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| \(f_5\) | 0101 | \((v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_7\) | 0111 | \((u v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_8\) | 1000 | \(u v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{10}\) | 1010 | \(v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{15}\) | 1111 | \(((~))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
Table 13
Table 13.  Qualifiers of Implication Ordering:  \(\alpha_i f = \Upsilon (f_i, f) = \Upsilon (f_i \Rightarrow f)\)
| \(u:\) \(v:\)
 | 1100 1010
 | \(f\!\) | \(\alpha_0\) | \(\alpha_1\) | \(\alpha_2\) | \(\alpha_3\) | \(\alpha_4\) | \(\alpha_5\) | \(\alpha_6\) | \(\alpha_7\) | \(\alpha_8\) | \(\alpha_9\) | \(\alpha_{10}\) | \(\alpha_{11}\) | \(\alpha_{12}\) | \(\alpha_{13}\) | \(\alpha_{14}\) | \(\alpha_{15}\) | 
| \(f_0\) | 0000 | \((~)\) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_2\) | 0010 | \((u) v\!\) | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_5\) | 0101 | \((v)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_7\) | 0111 | \((u v)\!\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_8\) | 1000 | \(u v\!\) | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{10}\) | 1010 | \(v\!\) | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 
| \(f_{12}\) | 1100 | \(u\!\) | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| \(f_{15}\) | 1111 | \(((~))\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
Table 14
Table 14.  Qualifiers of Implication Ordering:  \(\beta_i f = \Upsilon (f, f_i) = \Upsilon (f \Rightarrow f_i)\)
| \(u:\) \(v:\)
 | 1100 1010
 | \(f\!\) | \(\beta_0\) | \(\beta_1\) | \(\beta_2\) | \(\beta_3\) | \(\beta_4\) | \(\beta_5\) | \(\beta_6\) | \(\beta_7\) | \(\beta_8\) | \(\beta_9\) | \(\beta_{10}\) | \(\beta_{11}\) | \(\beta_{12}\) | \(\beta_{13}\) | \(\beta_{14}\) | \(\beta_{15}\) | 
| \(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_2\) | 0010 | \((u) v\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_3\) | 0011 | \((u)\!\) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_5\) | 0101 | \((v)\!\) | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 
| \(f_7\) | 0111 | \((u v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
| \(f_8\) | 1000 | \(u v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_{10}\) | 1010 | \(v\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 
| \(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 
| \(f_{15}\) | 1111 | \(((~))\!\) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 
Figure 15
Table 16
Table 16.  Syllogistic Premisses as Higher Order Indicator Functions
| \(\begin{array}{clcl}
\mathrm{A}                           &
\mathrm{Universal~Affirmative}       &
\mathrm{All}\ u\ \mathrm{is}\ v      &
\mathrm{Indicator~of}\ u (v) = 0     \\
\mathrm{E}                           &
\mathrm{Universal~Negative}          &
\mathrm{All}\ u\ \mathrm{is}\ (v)    &
\mathrm{Indicator~of}\ u \cdot v = 0 \\
\mathrm{I}                           &
\mathrm{Particular~Affirmative}      &
\mathrm{Some}\ u\ \mathrm{is}\ v     &
\mathrm{Indicator~of}\ u \cdot v = 1 \\
\mathrm{O}                           &
\mathrm{Particular~Negative}         &
\mathrm{Some}\ u\ \mathrm{is}\ (v)   &
\mathrm{Indicator~of}\ u (v) = 1     \\
\end{array}\)
 | 
Table 17
Table 17.  Simple Qualifiers of Propositions (Version 1)
| \(u:\) \(v:\)
 | 1100 1010
 | \(f\!\) | \((\ell_{11})\) \(\text{No } u \)
 \(\text{is } v \)
 | \((\ell_{10})\) \(\text{No } u \)
 \(\text{is }(v)\)
 | \((\ell_{01})\) \(\text{No }(u)\)
 \(\text{is } v \)
 | \((\ell_{00})\) \(\text{No }(u)\)
 \(\text{is }(v)\)
 | \( \ell_{00} \) \(\text{Some }(u)\)
 \(\text{is }(v)\)
 | \( \ell_{01} \) \(\text{Some }(u)\)
 \(\text{is } v \)
 | \( \ell_{10} \) \(\text{Some } u \)
 \(\text{is }(v)\)
 | \( \ell_{11} \) \(\text{Some } u \)
 \(\text{is } v \)
 | 
| \(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 
| \(f_2\) | 0010 | \((u) v\!\) | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 
| \(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 
| \(f_5\) | 0101 | \((v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 
| \(f_7\) | 0111 | \((u v)\!\) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 
| \(f_8\) | 1000 | \(u v\!\) | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 
| \(f_{10}\) | 1010 | \(v\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 
| \(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 
| \(f_{15}\) | 1111 | \(((~))\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
Table 18
Table 18.  Simple Qualifiers of Propositions (Version 2)
| \(u:\) \(v:\)
 | 1100 1010
 | \(f\!\) | \((\ell_{11})\) \(\text{No } u \)
 \(\text{is } v \)
 | \((\ell_{10})\) \(\text{No } u \)
 \(\text{is }(v)\)
 | \((\ell_{01})\) \(\text{No }(u)\)
 \(\text{is } v \)
 | \((\ell_{00})\) \(\text{No }(u)\)
 \(\text{is }(v)\)
 | \( \ell_{00} \) \(\text{Some }(u)\)
 \(\text{is }(v)\)
 | \( \ell_{01} \) \(\text{Some }(u)\)
 \(\text{is } v \)
 | \( \ell_{10} \) \(\text{Some } u \)
 \(\text{is }(v)\)
 | \( \ell_{11} \) \(\text{Some } u \)
 \(\text{is } v \)
 | 
| \(f_0\) | 0000 | \((~)\) | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 
| \(f_1\) | 0001 | \((u)(v)\!\) | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 
| \(f_2\) | 0010 | \((u) v\!\) | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 
| \(f_4\) | 0100 | \(u (v)\!\) | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 
| \(f_8\) | 1000 | \(u v\!\) | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 
| \(f_3\) | 0011 | \((u)\!\) | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 
| \(f_{12}\) | 1100 | \(u\!\) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 
| \(f_6\) | 0110 | \((u, v)\!\) | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 
| \(f_9\) | 1001 | \(((u, v))\!\) | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 
| \(f_5\) | 0101 | \((v)\!\) | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 
| \(f_{10}\) | 1010 | \(v\!\) | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 
| \(f_7\) | 0111 | \((u v)\!\) | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 
| \(f_{11}\) | 1011 | \((u (v))\!\) | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 
| \(f_{13}\) | 1101 | \(((u) v)\!\) | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 
| \(f_{14}\) | 1110 | \(((u)(v))\!\) | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 
| \(f_{15}\) | 1111 | \(((~))\) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 
Table 19
Table 19.  Relation of Quantifiers to Higher Order Propositions
| \(\text{Mnemonic}\) | \(\text{Category}\) | \(\text{Classical Form}\) | \(\text{Alternate Form}\) | \(\text{Symmetric Form}\) | \(\text{Operator}\) | 
| \(\text{E}\!\) \(\text{Exclusive}\)
 | \(\text{Universal}\) \(\text{Negative}\)
 | \(\text{All}\ u\ \text{is}\ (v)\) |  | \(\text{No}\  u\ \text{is}\  v \) | \((\ell_{11})\) | 
| \(\text{A}\!\) \(\text{Absolute}\)
 | \(\text{Universal}\) \(\text{Affirmative}\)
 | \(\text{All}\ u\ \text{is}\  v \) |  | \(\text{No}\  u\ \text{is}\ (v)\) | \((\ell_{10})\) | 
|  |  | \(\text{All}\ v\  \text{is}\  u \) | \(\text{No}\  v\  \text{is}\ (u)\) | \(\text{No}\ (u)\ \text{is}\  v \) | \((\ell_{01})\) | 
|  |  | \(\text{All}\ (v)\ \text{is}\  u \) | \(\text{No}\  (v)\ \text{is}\ (u)\) | \(\text{No}\  (u)\ \text{is}\ (v)\) | \((\ell_{00})\) | 
|  |  | \(\text{Some}\ (u)\ \text{is}\ (v)\) |  | \(\text{Some}\ (u)\ \text{is}\ (v)\) | \(\ell_{00}\!\) | 
|  |  | \(\text{Some}\ (u)\ \text{is}\ v\) |  | \(\text{Some}\ (u)\ \text{is}\ v\) | \(\ell_{01}\!\) | 
| \(\text{O}\!\) \(\text{Obtrusive}\)
 | \(\text{Particular}\) \(\text{Negative}\)
 | \(\text{Some}\ u\ \text{is}\ (v)\) |  | \(\text{Some}\ u\ \text{is}\ (v)\) | \(\ell_{10}\!\) | 
| \(\text{I}\!\) \(\text{Indefinite}\)
 | \(\text{Particular}\) \(\text{Affirmative}\)
 | \(\text{Some}\ u\ \text{is}\ v\) |  | \(\text{Some}\ u\ \text{is}\ v\) | \(\ell_{11}\!\) |