User:Jon Awbrey/MNO
Logical Graphs
Truth Tables
New Version
\mathcal{L}_1 | \mathcal{L}_2 | \mathcal{L}_3 | \mathcal{L}_4 |
p\colon\! | 1~1~1~1~0~0~0~0 | ||
q\colon\! | 1~1~0~0~1~1~0~0 | ||
r\colon\! | 1~0~1~0~1~0~1~0 | ||
\begin{matrix} f_{104} \\[4pt] f_{148} \\[4pt] f_{146} \\[4pt] f_{97} \\[4pt] f_{134} \\[4pt] f_{73} \\[4pt] f_{41} \\[4pt] f_{22} \end{matrix} |
\begin{matrix} f_{01101000} \\[4pt] f_{10010100} \\[4pt] f_{10010010} \\[4pt] f_{01100001} \\[4pt] f_{10000110} \\[4pt] f_{01001001} \\[4pt] f_{00101001} \\[4pt] f_{00010110} \end{matrix} |
\begin{matrix} 0~1~1~0~1~0~0~0 \\[4pt] 1~0~0~1~0~1~0~0 \\[4pt] 1~0~0~1~0~0~1~0 \\[4pt] 0~1~1~0~0~0~0~1 \\[4pt] 1~0~0~0~0~1~1~0 \\[4pt] 0~1~0~0~1~0~0~1 \\[4pt] 0~0~1~0~1~0~0~1 \\[4pt] 0~0~0~1~0~1~1~0 \end{matrix} |
\begin{matrix} \texttt{(~p~,~q~,~r~)} \\[4pt] \texttt{(~p~,~q~,(r))} \\[4pt] \texttt{(~p~,(q),~r~)} \\[4pt] \texttt{(~p~,(q),(r))} \\[4pt] \texttt{((p),~q~,~r~)} \\[4pt] \texttt{((p),~q~,(r))} \\[4pt] \texttt{((p),(q),~r~)} \\[4pt] \texttt{((p),(q),(r))} \end{matrix} |
\begin{matrix} f_{233} \\[4pt] f_{214} \\[4pt] f_{182} \\[4pt] f_{121} \\[4pt] f_{158} \\[4pt] f_{109} \\[4pt] f_{107} \\[4pt] f_{151} \end{matrix} |
\begin{matrix} f_{11101001} \\[4pt] f_{11010110} \\[4pt] f_{10110110} \\[4pt] f_{01111001} \\[4pt] f_{10011110} \\[4pt] f_{01101101} \\[4pt] f_{01101011} \\[4pt] f_{10010111} \end{matrix} |
\begin{matrix} 1~1~1~0~1~0~0~1 \\[4pt] 1~1~0~1~0~1~1~0 \\[4pt] 1~0~1~1~0~1~1~0 \\[4pt] 0~1~1~1~1~0~0~1 \\[4pt] 1~0~0~1~1~1~1~0 \\[4pt] 0~1~1~0~1~1~0~1 \\[4pt] 0~1~1~0~1~0~1~1 \\[4pt] 1~0~0~1~0~1~1~1 \end{matrix} |
\begin{matrix} \texttt{(((p),(q),(r)))} \\[4pt] \texttt{(((p),(q),~r~))} \\[4pt] \texttt{(((p),~q~,(r)))} \\[4pt] \texttt{(((p),~q~,~r~))} \\[4pt] \texttt{((~p~,(q),(r)))} \\[4pt] \texttt{((~p~,(q),~r~))} \\[4pt] \texttt{((~p~,~q~,(r)))} \\[4pt] \texttt{((~p~,~q~,~r~))} \end{matrix} |
Old Version
\mathcal{L}_1 | \mathcal{L}_2 | \mathcal{L}_3 | \mathcal{L}_4 |
p =\! | 1 1 1 1 0 0 0 0 | ||
q =\! | 1 1 0 0 1 1 0 0 | ||
r =\! | 1 0 1 0 1 0 1 0 |
f_{104}\! | f_{01101000}\! | 0 1 1 0 1 0 0 0 | ( p , q , r )\! |
f_{148}\! | f_{10010100}\! | 1 0 0 1 0 1 0 0 | ( p , q , (r))\! |
f_{146}\! | f_{10010010}\! | 1 0 0 1 0 0 1 0 | ( p , (q), r )\! |
f_{97}\! | f_{01100001}\! | 0 1 1 0 0 0 0 1 | ( p , (q), (r))\! |
f_{134}\! | f_{10000110}\! | 1 0 0 0 0 1 1 0 | ((p), q , r )\! |
f_{73}\! | f_{01001001}\! | 0 1 0 0 1 0 0 1 | ((p), q , (r))\! |
f_{41}\! | f_{00101001}\! | 0 0 1 0 1 0 0 1 | ((p), (q), r )\! |
f_{22}\! | f_{00010110}\! | 0 0 0 1 0 1 1 0 | ((p), (q), (r))\! |
f_{233}\! | f_{11101001}\! | 1 1 1 0 1 0 0 1 | (((p), (q), (r)))\! |
f_{214}\! | f_{11010110}\! | 1 1 0 1 0 1 1 0 | (((p), (q), r ))\! |
f_{182}\! | f_{10110110}\! | 1 0 1 1 0 1 1 0 | (((p), q , (r)))\! |
f_{121}\! | f_{01111001}\! | 0 1 1 1 1 0 0 1 | (((p), q , r ))\! |
f_{158}\! | f_{10011110}\! | 1 0 0 1 1 1 1 0 | (( p , (q), (r)))\! |
f_{109}\! | f_{01101101}\! | 0 1 1 0 1 1 0 1 | (( p , (q), r ))\! |
f_{107}\! | f_{01101011}\! | 0 1 1 0 1 0 1 1 | (( p , q , (r)))\! |
f_{151}\! | f_{10010111}\! | 1 0 0 1 0 1 1 1 | (( p , q , r ))\! |
Venn Diagrams
New Version
\text{Figure 2.}~~\texttt{(p, q, r)} |
\text{Figure 3.}~~\texttt{((p),(q),(r))} |
Old Version
\text{Figure 2.} ~~ \texttt{(} p \texttt{,} q \texttt{,} r \texttt{)} |
\text{Figure 3.} ~~ \texttt{((} p \texttt{),(} q \texttt{),(} r \texttt{))} |